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Abstract

Spacetime singularities have been discovered which arsigdlly much weaker than those predicted by the
classical singularity theorems. Geodesics evolve thrabghm and they only display infinities in the derivatives of
their curvature invariants. So far, these singularitiegetappeared to require rather exotic and unphysical maiter f
their occurrence. Here we show that a large class of sinigiakaof this form can be found in a simple Friedmann
cosmology containing only a scalar-field with a power-laif-sg#eraction potential. Their existence challenges
several preconceived ideas about the nature of spacetirgelaiities and impacts upon the end of inflation in the
early universe.

A striking feature of relativistic cosmology is the prediiet that past and future singularities can occur. Originall
singularities were defined by the existence of incompletelgsics, and a variety of sufficient conditions for geodesic
incompleteness were established by a series of importaatdéims from 1965-19721[1]. More recently, by using the
Einstein equations, new types of physical singularitiegehaeen identified which can occur at finite time and are
unaccompanied by geodesic incompleteness|[2] 3, 4]. Maantiigs, such as the density and the expansion rate,
which diverge at traditional 'big bang’ singularities, ram finite whilst other physical quantities, like the pregsu
diverge in finite proper time. The simplest example of whateisned a 'sudden’ singularity occurs in the zero-
curvature Friedmann universe with scale fact(r) and Hubble ratd? = a/a, containing matter with density and
pressure. The field equations ar&{G =1 = ¢)
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3H? = p, 1)
p = —3H(p—|—p), (2)
i = _@, )

These equations permit there to be a finite time at whicha, H, andp all remain finite, in accord with Eq{1),
but wherep, » anda all become infinite, in accord with Eqd](2}H(3). The key teithexistence is in not assuming
any functional link betweep andp, nor any boundedness condition pnand this freedom allows an acceleration
singularityd — oo to arise at finite time as— ¢, because of a divergence in the matter presgure,co. Here is an
explicit example. On the time interval< ¢ < ¢,, we can choose a solution for the scale faet@) of the form

o= (£) @-n+1-(1-1)". @

whereas = a(ts), ¢ andn are positive constants. #f— ¢, from below thera — a4, H — H, andp — p, > 0,
whereas, H,, andp, are all finite, butp — co andd — —oco wheneverl < n < 2and0 < ¢ < 1. Ast — 0 we
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have a big bang singularity with — co anda(t) o t? but, ast — ¢, is approached from below, a sudden singularity
occurs withd — —oo buta anda finite.

Nothing singular happens to geodesicg as ¢, [5] and we always have + 3p > 0 becauséi/a < 0. These
singularities are notable because they obey all the cllssieergy conditions bar the dominant energy condition, in
contrast to most other exotic singularities discovereds{f]. We can also create a divergence in any highes 1)
order time-derivative of the scale factor, with all loweder derivatives staying finite, by choosinge (N, N + 1)
for integerN > 2 in Eq. (4). Adding the curvature term to the Friedmann equathakes no difference to these
conclusions, and Eq. (4) is actually a leading-order apprakon to part of the general solution of the Einstein
equations|7].

Notice that no equation of state linkingand p has been assumed, and in fact the relation between them in
these solutions tends to be pathological Fasliverges at finitep. It is natural to ask whether this type of finite-
time singularity can occur when there is a physically mdaé&dachoice ofp and p which doesn't allow them to be
independent variables? We shall show that the answer tqtigistion is 'yes’.

There are in fact very simple examples that can arise in thaysif inflation in the early stages of the universe, or
the universe’s more recent phase of dark-energy driverieetion. They arise for the simple case of a cosmological
scalar field g, with a positive power-law self-interaction potentitll(¢), contributing a density and pressure

with
V(p) = Ap™, A > 0. (5)
The field equation${1J(3) are therefore
B = 584 V(6), ©)
¢ = —3H¢— Ang" "', (7
G = ¢ 8)

Whenn is a positiveeven integer they describe the classic model of large-field iiofain a potential with a single
minimum [8]. Whenn is a positiveodd integer the universe appears to recollapse under the ic#uehthe scalar
field (for then = 1 case see Ref. [9]). We will be interested in the case where0, with n not an integer.

We first examine the case where< n < 1. We choose initial conditions so that the universe is expajiditially
andg, > 0, but the value o, is unconstrained. It is not difficult to see how the systemasin time. Since, > 0
both terms on the right-hand side of Ef] (7) are negativen $imite time ¢ becomes negative. Hence, in finite time
the scalar field starts to decrease, and sihcentinues to decrease, as the second term on the right-fisndf<Eq.
() increases ag decreases, it will reach = 0 in finite time. When this happenscan also be shown to be finite and
strictly negative using EqLL6), but from EqJ (7) we have thatr —co as¢ — 0. From Egs. [(B)E8), we see that
and H are both finite at this point but’ diverges because

H=—¢p— —00 as ¢ — 0. (9)

This divergence is not a scalar polynomial curvature siaiyl [10], as bothil and I are finite at this point. For our
spatially-flat Friedmann universe, the Ricci scalgrmay be written as

R=6(2H? + H), (10)

which is clearly finite agp — 0. However, higher scalar derivatives of the curvature (lk&d* R or [1R) are not
regular since . . )
R=6(4HH+ H) —» —c0 as ¢ — 0. (11)

Itis easy to check also that these singularities satistyaltlassical energy conditions in the vicinity of the silagity.
This is the first example of a finite-time singularity for a pimand realistic matter model.



Similar singularities can also be shown to exist when 1, although in this case only higher-order derivatives of
¢ will diverge at the singularity. This may be seen as difféating Eq. [T) once gives

59 - 25" - 3HV(6) + V() =0. (12)

Forl < n < 2, every term except the first and last on the left-hand sideiefasp — 0, so'qy — oo as¢ — 0. This
means that the first divergence in the scale factor occumuattf order in its derivatives, since

I =—3"—dd =00 as¢— 0. (13)

Hence /R and higher derivatives of the curvature are divergent omagmh to this singularity.

It is not difficult to generalise these conclusions to scéildd potentials of the form of Eq. (4) with arbitrarily
large non-integer values of. If £ < n < k + 1, wherek is a positive integer, then as — 0 we haveg*+2) —
(—1)**+1 x oo, with all lower derivatives ofb finite. This implies that the first divergence of the Hubblteraccurs
for the (k + 2)*" derivative: H*+2) — (—1)k*1 x oo as¢ — 0. But if n is an integer these singularitisever occur
becausé/(¢) is smooth atp = 0. By similar arguments any potential which is not smootlp at 0 should create
singularities of a similar type.

These singularities have a number of remarkable properfiasy are remarkably weak in that they exhibit no
divergence of the curvature on approach to the singulanitiyadl polynomial curvature invariants are finite: the only
divergence occurs in derivatives of the curvature. Due ¢éovtkakness of these singularities the spacetime remains
geodesically complete. To our knowledge they are the firatmgtes of such weak singularities in a Friedmann
spacetime with a realistic matter model.

Evolving these spacetimes beyopid= 0 is not always simple, as in some cases (for instanee %) the matter
model breaks down beyond the singular paint= 0, since the naive evolution would pushto become strictly
negative, which makes the expansion rate become complexevdw, this is only the case for some choices pand
there are many choices (exg.— %) for which V (¢) is always real-valued. Numerical evidence suggests thégq)
is negative-definite fop < 0 the spacetime collapses to a 'big crunch’ singularity, @ffilV (¢) is positive-definite
for ¢ < 0 no such collapse occurs. Instead, the universe passegthfos: 0 an infinite number of times. These
spacetimes illustrate that the distinction between sigaihd non-singular spacetimes is by no means clear-cut, and
there are many spacetimes, sourced by realistic mattechvainé geodesically complete yet possess observables which
can evolve to finite-time singularities.

The formation of these singularities is completely genetficdeed, once can rigorously show that they form
from any homogeneous and isotropic initial data wher n < 1. They can also be shown to be stable to small
perturbations using standard perturbation thelory [114, @me can adapt the arguments above to show they form in
expanding, homogeneous universes with large anisotropiesy are even stable to quantum corrections since one can
construct examples where the divergence only occurs atwtnaaily high order of the scale factor derivative [12] 13]
This is in contrast to most other examples of weak singigardiscovered so far.

Finally, the model studied in this essay offers an intriguaiternative to conventional models of inflation. If
we choose initial conditions so that the system starts higlugh up the potential, and its early evolution is potential
dominated, then inflation occurs as usual for as long astbegtnergy condition is violated. Inflation endsfas> 0,
whereupon the universe enters the reheating phase [14]evwhe evolution will differs from standard models of
inflation when the system reachés= 0 deep in the reheating phase. When that happens, the spaakiralops
the weak singularity described in this essay. Since priedistfor the power spectrum of the cosmic microwave
background (CMB) are insensitive to the behaviour at rehgdihese models will give the same predictions for CMB
observables as conventional large-field inflation modeisleéd, our monomial potentials with < 2 give a better
fit to current CMB data than those with large integer values §ift5]. However, these models ultimately have very
different dynamics from conventional reheating modelseybring inflation to a singular but timely end.
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