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Abstract

Spacetime singularities have been discovered which are physically much weaker than those predicted by the
classical singularity theorems. Geodesics evolve throughthem and they only display infinities in the derivatives of
their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for
their occurrence. Here we show that a large class of singularities of this form can be found in a simple Friedmann
cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges
several preconceived ideas about the nature of spacetime singularities and impacts upon the end of inflation in the
early universe.

A striking feature of relativistic cosmology is the prediction that past and future singularities can occur. Originally,
singularities were defined by the existence of incomplete geodesics, and a variety of sufficient conditions for geodesic
incompleteness were established by a series of important theorems from 1965-1972 [1]. More recently, by using the
Einstein equations, new types of physical singularities have been identified which can occur at finite time and are
unaccompanied by geodesic incompleteness [2, 3, 4]. Many quantities, such as the density and the expansion rate,
which diverge at traditional ’big bang’ singularities, remain finite whilst other physical quantities, like the pressure,
diverge in finite proper time. The simplest example of what istermed a ’sudden’ singularity occurs in the zero-
curvature Friedmann universe with scale factora(t) and Hubble rateH = ȧ/a, containing matter with densityρ and
pressurep. The field equations are (8πG = 1 = c)

3H2 = ρ, (1)

ρ̇ = −3H(ρ+ p), (2)

ä = −
(ρ+ 3p)a

6
, (3)

These equations permit there to be a finite time,ts, at whicha,H, andρ all remain finite, in accord with Eq. (1),
but wherep, ρ̇ and ä all become infinite, in accord with Eqs. (2)-(3). The key to their existence is in not assuming
any functional link betweenp andρ, nor any boundedness condition onp, and this freedom allows an acceleration
singularityä → ∞ to arise at finite time ast → ts because of a divergence in the matter pressure,p → ∞. Here is an
explicit example. On the time interval0 ≤ t ≤ ts, we can choose a solution for the scale factora(t) of the form

a(t) =

(

t

ts

)q

(as − 1) + 1−

(

1−
t

ts

)n

, (4)

whereas ≡ a(ts), q andn are positive constants. Ift → ts from below thena → as, H → Hs andρ → ρs > 0,
whereas, Hs, andρs are all finite, butp → ∞ andä → −∞ whenever1 < n < 2 and0 < q ≤ 1. As t → 0 we
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have a big bang singularity withρ → ∞ anda(t) ∝ tq but, ast → ts is approached from below, a sudden singularity
occurs withä → −∞ buta andȧ finite.

Nothing singular happens to geodesics ast → ts [5] and we always haveρ + 3p > 0 becausëa/a < 0. These
singularities are notable because they obey all the classical energy conditions bar the dominant energy condition, in
contrast to most other exotic singularities discovered so far [6]. We can also create a divergence in any higher(N+1)st

order time-derivative of the scale factor, with all lower-order derivatives staying finite, by choosingn ∈ (N,N + 1)
for integerN > 2 in Eq. (4). Adding the curvature term to the Friedmann equation makes no difference to these
conclusions, and Eq. (4) is actually a leading-order approximation to part of the general solution of the Einstein
equations [7].

Notice that no equation of state linkingρ and p has been assumed, and in fact the relation between them in
these solutions tends to be pathological, asP diverges at finiteρ. It is natural to ask whether this type of finite-
time singularity can occur when there is a physically motivated choice ofp andρ which doesn’t allow them to be
independent variables? We shall show that the answer to thisquestion is ’yes’.

There are in fact very simple examples that can arise in the study of inflation in the early stages of the universe, or
the universe’s more recent phase of dark-energy driven acceleration. They arise for the simple case of a cosmological
scalar field,φ, with a positive power-law self-interaction potential,V (φ), contributing a density and pressure

ρ =
1

2
φ̇
2
+ V (φ) and p =

1

2
φ̇
2
− V (φ),

with
V (φ) = Aφn, A > 0. (5)

The field equations (1)-(3) are therefore

3H2 =
1

2
φ̇
2
+ V (φ), (6)

φ̈ = −3Hφ̇−Anφn−1, (7)

2Ḣ = −φ̇
2
. (8)

Whenn is a positiveeven integer they describe the classic model of large-field inflation in a potential with a single
minimum [8]. Whenn is a positiveodd integer the universe appears to recollapse under the influence of the scalar
field (for then = 1 case see Ref. [9]). We will be interested in the case wheren > 0, with n not an integer.

We first examine the case where0 < n < 1. We choose initial conditions so that the universe is expanding initially
andφ0 > 0, but the value oḟφ0 is unconstrained. It is not difficult to see how the system evolves in time. Sincėφ0 > 0
both terms on the right-hand side of Eq. (7) are negative, so in finite timeφ̇ becomes negative. Hence, in finite time
the scalar field starts to decrease, and sinceφ̇ continues to decrease, as the second term on the right-hand side of Eq.
(7) increases asφ decreases, it will reachφ = 0 in finite time. When this happensφ̇ can also be shown to be finite and
strictly negative using Eq. (6), but from Eq. (7) we have thatφ̈ → −∞ asφ → 0. From Eqs. (6)-(8), we see thatH
andḢ are both finite at this point buẗH diverges because

Ḧ = −φ̇φ̈ → −∞ as φ → 0. (9)

This divergence is not a scalar polynomial curvature singularity [10], as bothH andḢ are finite at this point. For our
spatially-flat Friedmann universe, the Ricci scalar,R, may be written as

R = 6(2H2 + Ḣ), (10)

which is clearly finite asφ → 0. However, higher scalar derivatives of the curvature (like∂aR∂aR or �R) are not
regular since

Ṙ = 6(4HḢ + Ḧ) → −∞ as φ → 0. (11)

It is easy to check also that these singularities satisfy allthe classical energy conditions in the vicinity of the singularity.
This is the first example of a finite-time singularity for a simple and realistic matter model.
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Similar singularities can also be shown to exist whenn > 1, although in this case only higher-order derivatives of
φ will diverge at the singularity. This may be seen as differentiating Eq. (7) once gives

...
φ − 9H2φ̇−

3

2
φ̇
3
− 3HV ′(φ) + V ′′(φ)φ̇ = 0. (12)

For1 < n < 2, every term except the first and last on the left-hand side is finite asφ → 0, so
...
φ → ∞ asφ → 0. This

means that the first divergence in the scale factor occurs at fourth order in its derivatives, since

...
H = −φ̈

2
− φ̇

...
φ → ∞ as φ → 0. (13)

Hence,�R and higher derivatives of the curvature are divergent on approach to this singularity.
It is not difficult to generalise these conclusions to scalar-field potentials of the form of Eq. (4) with arbitrarily

large non-integer values ofn. If k < n < k + 1, wherek is a positive integer, then asφ → 0 we haveφ(k+2)
→

(−1)k+1 ×∞, with all lower derivatives ofφ finite. This implies that the first divergence of the Hubble rate occurs
for the(k + 2)th derivative:H(k+2) → (−1)k+1 ×∞ asφ → 0. But if n is an integer these singularitiesnever occur
becauseV (φ) is smooth atφ = 0. By similar arguments any potential which is not smooth atφ = 0 should create
singularities of a similar type.

These singularities have a number of remarkable properties. They are remarkably weak in that they exhibit no
divergence of the curvature on approach to the singularity and all polynomial curvature invariants are finite: the only
divergence occurs in derivatives of the curvature. Due to the weakness of these singularities the spacetime remains
geodesically complete. To our knowledge they are the first examples of such weak singularities in a Friedmann
spacetime with a realistic matter model.

Evolving these spacetimes beyondφ = 0 is not always simple, as in some cases (for instancen = 1
2 ) the matter

model breaks down beyond the singular pointφ = 0, since the naive evolution would pushφ to become strictly
negative, which makes the expansion rate become complex. However, this is only the case for some choices ofn, and
there are many choices (e.g.n = 1

3 ) for whichV (φ) is always real-valued. Numerical evidence suggests that ifV (φ)
is negative-definite forφ < 0 the spacetime collapses to a ’big crunch’ singularity, while if V (φ) is positive-definite
for φ < 0 no such collapse occurs. Instead, the universe passes through φ = 0 an infinite number of times. These
spacetimes illustrate that the distinction between singular and non-singular spacetimes is by no means clear-cut, and
there are many spacetimes, sourced by realistic matter, which are geodesically complete yet possess observables which
can evolve to finite-time singularities.

The formation of these singularities is completely generic. Indeed, once can rigorously show that they form
from any homogeneous and isotropic initial data when0 < n < 1. They can also be shown to be stable to small
perturbations using standard perturbation theory [11], and one can adapt the arguments above to show they form in
expanding, homogeneous universes with large anisotropies. They are even stable to quantum corrections since one can
construct examples where the divergence only occurs at an arbitrarily high order of the scale factor derivative [12, 13].
This is in contrast to most other examples of weak singularities discovered so far.

Finally, the model studied in this essay offers an intriguing alternative to conventional models of inflation. If
we choose initial conditions so that the system starts high enough up the potential, and its early evolution is potential-
dominated, then inflation occurs as usual for as long as the strong-energy condition is violated. Inflation ends asφ → 0,
whereupon the universe enters the reheating phase [14]. However, the evolution will differs from standard models of
inflation when the system reachesφ = 0 deep in the reheating phase. When that happens, the spacetime develops
the weak singularity described in this essay. Since predictions for the power spectrum of the cosmic microwave
background (CMB) are insensitive to the behaviour at reheating these models will give the same predictions for CMB
observables as conventional large-field inflation models. Indeed, our monomial potentials withn < 2 give a better
fit to current CMB data than those with large integer values ofn [15]. However, these models ultimately have very
different dynamics from conventional reheating models. They bring inflation to a singular but timely end.
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