5,271 research outputs found
The Invisible Web: A Quick Overview
This article provides a quick overview of recent literature published about the Invisible Web. In particular, this article covers such topics as what is the Invisible Web, weaknesses of popular search engines, types of information found on the Invisible Web, when to use the Invisible Web, search tools and search strategies
Observation of Asymmetric Transport in Structures with Active Nonlinearities
A mechanism for asymmetric transport based on the interplay between the
fundamental symmetries of parity (P) and time (T) with nonlinearity is
presented. We experimentally demonstrate and theoretically analyze the
phenomenon using a pair of coupled van der Pol oscillators, as a reference
system, one with anharmonic gain and the other with complementary anharmonic
loss; connected to two transmission lines. An increase of the gain/loss
strength or the number of PT-symmetric nonlinear dimers in a chain, can
increase both the asymmetry and transmittance intensities.Comment: 5 pages, 5 figure
High-resolution Velocity Fields of Low-mass Disk Galaxies. I. CO Observations
This paper is the first in a series whose aim is to examine the relative distributions of dark and baryonic matter as a function of star formation history in a representative sample of low-mass disk galaxies. In this paper, we present high-resolution 12 CO(j=1→0) interferometry for a sample of 26 nearby dwarf galaxies that were obtained from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Among these 26 galaxies, 14 have good CO detections, including 6 galaxies previously detected in single-dish CO measurements and 8 newly detected ones. We find a linear correlation between the CO flux and the mid- and far-IR flux from the WISE and IRAS catalogs. Compared to the far-IR flux, the mid-IR flux may be a better indication of whether a galaxy contains sufficient CO for detection at the level of instrument sensitivity of CARMA. This correlation might prove to be useful in future studies to help choosing other CO targets for observation. The median molecular mass (including helium) of our galaxies is 2.8×10 8 M⊙, which is consistent with past observations for dwarf galaxies. The molecular content is weakly correlated with the dynamical mass, r-band luminosity and size of the galaxies. The median ratios of molecular mass versus dynamical mass and molecular mass versus r-band luminosity are M mol M dyn ≈ 0.035 and M mol L r ≈ 0.078M⊙ L r , ⊙, respectively, which are also consistent with past observations for dwarf galaxies
Testing A (Stringy) Model of Quantum Gravity
I discuss a specific model of space-time foam, inspired by the modern
non-perturbative approach to string theory (D-branes). The model views our
world as a three brane, intersecting with D-particles that represent stringy
quantum gravity effects, which can be real or virtual. In this picture, matter
is represented generically by (closed or open) strings on the D3 brane
propagating in such a background. Scattering of the (matter) strings off the
D-particles causes recoil of the latter, which in turn results in a distortion
of the surrounding space-time fluid and the formation of (microscopic, i.e.
Planckian size) horizons around the defects. As a mean-field result, the
dispersion relation of the various particle excitations is modified, leading to
non-trivial optical properties of the space time, for instance a non-trivial
refractive index for the case of photons or other massless probes. Such models
make falsifiable predictions, that may be tested experimentally in the
foreseeable future. I describe a few such tests, ranging from observations of
light from distant gamma-ray-bursters and ultra high energy cosmic rays, to
tests using gravity-wave interferometric devices and terrestrial particle
physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings
style. Invited talk at the third international conference on Dark Matter in
Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200
High-resolution Velocity Fields of Low-mass Disk Galaxies. I. CO Observations
This paper is the first in a series whose aim is to examine the relative distributions of dark and baryonic matter as a function of star formation history in a representative sample of low-mass disk galaxies. In this paper, we present high-resolution 12 CO(j=1→0) interferometry for a sample of 26 nearby dwarf galaxies that were obtained from the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Among these 26 galaxies, 14 have good CO detections, including 6 galaxies previously detected in single-dish CO measurements and 8 newly detected ones. We find a linear correlation between the CO flux and the mid- and far-IR flux from the WISE and IRAS catalogs. Compared to the far-IR flux, the mid-IR flux may be a better indication of whether a galaxy contains sufficient CO for detection at the level of instrument sensitivity of CARMA. This correlation might prove to be useful in future studies to help choosing other CO targets for observation. The median molecular mass (including helium) of our galaxies is 2.8×10 8 M⊙, which is consistent with past observations for dwarf galaxies. The molecular content is weakly correlated with the dynamical mass, r-band luminosity and size of the galaxies. The median ratios of molecular mass versus dynamical mass and molecular mass versus r-band luminosity are M mol M dyn ≈ 0.035 and M mol L r ≈ 0.078M⊙ L r , ⊙, respectively, which are also consistent with past observations for dwarf galaxies
Multivariate discrimination and the Higgs + W/Z search
A systematic method for optimizing multivariate discriminants is developed
and applied to the important example of a light Higgs boson search at the
Tevatron and the LHC. The Significance Improvement Characteristic (SIC),
defined as the signal efficiency of a cut or multivariate discriminant divided
by the square root of the background efficiency, is shown to be an extremely
powerful visualization tool. SIC curves demonstrate numerical instabilities in
the multivariate discriminants, show convergence as the number of variables is
increased, and display the sensitivity to the optimal cut values. For our
application, we concentrate on Higgs boson production in association with a W
or Z boson with H -> bb and compare to the irreducible standard model
background, Z/W + bb. We explore thousands of experimentally motivated,
physically motivated, and unmotivated single variable discriminants. Along with
the standard kinematic variables, a number of new ones, such as twist, are
described which should have applicability to many processes. We find that some
single variables, such as the pull angle, are weak discriminants, but when
combined with others they provide important marginal improvement. We also find
that multiple Higgs boson-candidate mass measures, such as from mild and
aggressively trimmed jets, when combined may provide additional discriminating
power. Comparing the significance improvement from our variables to those used
in recent CDF and DZero searches, we find that a 10-20% improvement in
significance against Z/W + bb is possible. Our analysis also suggests that the
H + W/Z channel with H -> bb is also viable at the LHC, without requiring a
hard cut on the W/Z transverse momentum.Comment: 41 pages, 5 tables, 29 figure
Crosstalk between G-protein and Ca2+ pathways switches intracellular cAMP levels
Cyclic adenosine monophosphate and cyclic guanosine monophosphate are universal intracellular messengers whose concentrations are regulated by molecular networks comprised of different isoforms of the synthases adenylate cyclase or guanylate cyclase and the phosphodiesterases which degrade these compounds. In this paper, we employ a systems biology approach to develop mathematical models of these networks that, for the first time, take into account the different biochemical properties of the isoforms involved. To investigate the mechanisms underlying the joint regulation of cAMP and cGMP, we apply our models to analyse the regulation of cilia beat frequency in Paramecium by Ca(2+). Based on our analysis of these models, we propose that the diversity of isoform combinations that occurs in living cells provides an explanation for the huge variety of intracellular processes that are dependent on these networks. The inclusion of both G-protein receptor and Ca(2+)-dependent regulation of AC in our models allows us to propose a new explanation for the switching properties of G-protein subunits involved in nucleotide regulation. Analysis of the models suggests that, depending on whether the G-protein subunit is bound to AC, Ca(2+) can either activate or inhibit AC in a concentration-dependent manner. The resulting analysis provides an explanation for previous experimental results that showed that alterations in Ca(2+) concentrations can either increase or decrease cilia beat frequency over particular Ca(2+) concentration ranges
Stringy Space-Time Foam and High-Energy Cosmic Photons
In this review, I discuss briefly stringent tests of Lorentz-violating
quantum space-time foam models inspired from String/Brane theories, provided by
studies of high energy Photons from intense celestial sources, such as Active
Galactic Nuclei or Gamma Ray Bursts. The theoretical models predict
modifications to the radiation dispersion relations, which are quadratically
suppressed by the string mass scale, and time delays in the arrival times of
photons (assumed to be emitted more or less simultaneously from the source),
which are proportional to the photon energy, so that the more energetic photons
arrive later. Although the astrophysics at the source of these energetic
photons is still not understood, and such non simultaneous arrivals, that have
been observed recently, might well be due to non simultaneous emission as a
result of conventional physics effects, nevertheless, rather surprisingly, the
observed time delays can also fit excellently the stringy space-time foam
scenarios, provided the space-time defect foam is inhomogeneous. The key
features of the model, that allow it to evade a plethora of astrophysical
constraints on Lorentz violation, in sharp contrast to other field-theoretic
Lorentz-violating models of quantum gravity, are: (i) transparency of the foam
to electrons and in general charged matter, (ii) absence of birefringence
effects and (iii) a breakdown of the local effective lagrangian formalism.Comment: 26 pages Latex, 4 figures, uses special macros. Keynote Lecture in
the International Conference "Recent Developments in Gravity" (NEB14),
Ioannina (Greece) June 8-11 201
Heavy Squarks at the LHC
The LHC, with its seven-fold increase in energy over the Tevatron, is capable
of probing regions of SUSY parameter space exhibiting qualitatively new
collider phenomenology. Here we investigate one such region in which first
generation squarks are very heavy compared to the other superpartners. We find
that the production of these squarks, which is dominantly associative, only
becomes rate-limited at mSquark > 4(5) TeV for L~10(100) fb-1. However,
discovery of this scenario is complicated because heavy squarks decay primarily
into a jet and boosted gluino, yielding a dijet-like topology with missing
energy (MET) pointing along the direction of the second hardest jet. The result
is that many signal events are removed by standard jet/MET anti-alignment cuts
designed to guard against jet mismeasurement errors. We suggest replacing these
anti-alignment cuts with a measurement of jet substructure that can
significantly extend the reach of this channel while still removing much of the
background. We study a selection of benchmark points in detail, demonstrating
that mSquark= 4(5) TeV first generation squarks can be discovered at the LHC
with L~10(100)fb-1
Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation
The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression
- …
