699 research outputs found

    On the Cause of Recent Variations in Lower Stratospheric Ozone

    Get PDF
    We use height‐resolved and total column satellite observations and 3‐D chemical transport model simulations to study stratospheric ozone variations during 1998–2017 as ozone‐depleting substances decline. In 2017 extrapolar lower stratospheric ozone displayed a strong positive anomaly following much lower values in 2016. This points to large interannual variability rather than an ongoing downward trend, as reported recently by Ball et al. (2018, https://doi.org/10.5194/acp‐18‐1379‐2018). The observed ozone variations are well captured by the chemical transport model throughout the stratosphere and are largely driven by meteorology. Model sensitivity experiments show that the contribution of past trends in short‐lived chlorine species to the ozone changes is small. Similarly, the potential impact of modest trends in natural brominated short‐lived species is small. These results confirm the important role that atmospheric dynamics plays in controlling ozone in the extrapolar lower stratosphere on multiannual time scales and the continued importance of monitoring ozone profiles as the stratosphere changes

    Fluoxetine: a case history of its discovery and preclinical development

    Get PDF
    Introduction: Depression is a multifactorial mood disorder with a high prevalence worldwide. Until now, treatments for depression have focused on the inhibition of monoaminergic reuptake sites, which augment the bioavailability of monoamines in the CNS. Advances in drug discovery have widened the therapeutic options with the synthesis of so-called selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine. Areas covered: The aim of this case history is to describe and discuss the pharmacokinetic and pharmacodynamic profiles of fluoxetine, including its acute effects and the adaptive changes induced after long-term treatment. Furthermore, the authors review the effect of fluoxetine on neuroplasticity and adult neurogenesis. In addition, the article summarises the preclinical behavioural data available on fluoxetine’s effects on depressive-like behaviour, anxiety and cognition as well as its effects on other diseases. Finally, the article describes the seminal studies validating the antidepressant effects of fluoxetine. Expert opinion: Fluoxetine is the first selective SSRI that has a recognised clinical efficacy and safety profile. Since its discovery, other molecules that mimic its mechanism of action have been developed, commencing a new age in the treatment of depression. Fluoxetine has also demonstrated utility in the treatment of other disorders for which its prescription has now been approved

    Neuroimaging correlates of brain injury in Wilson's disease: a multimodal, whole-brain MRI study

    Get PDF
    Wilson's disease is an autosomal-recessive disorder of copper metabolism with neurological and hepatic presentations. Chelation therapy is used to 'de-copper' patients but neurological outcomes remain unpredictable. A range of neuroimaging abnormalities have been described and may provide insights into disease mechanisms, in addition to prognostic and monitoring biomarkers. Previous quantitative MRI analyses have focussed on specific sequences or regions of interest, often stratifying chronically-treated patients according to persisting symptoms as opposed to initial presentation. In this cross-sectional study, we performed a combination of unbiased, whole-brain analyses on T1-weighted, fluid-attenuated inversion recovery, diffusion-weighted and susceptibility-weighted imaging data from 40 prospectively-recruited patients with Wilson's disease (age range 16-68). We compared patients with neurological (n = 23) and hepatic (n = 17) presentations to determine the neuroradiological sequelae of the initial brain injury. We also subcategorized patients according to recent neurological status, classifying those with neurological presentations or deterioration in the preceding six months as having 'active' disease. This allowed us to compare patients with active (n = 5) and stable (n = 35) disease and identify imaging correlates for persistent neurological deficits and copper indices in chronically-treated, stable patients. Using a combination of voxel-based morphometry and region-of-interest volumetric analyses, we demonstrate that grey matter volumes are lower in the basal ganglia, thalamus, brainstem, cerebellum, anterior insula and orbitofrontal cortex when comparing patients with neurological and hepatic presentations. In chronically-treated, stable patients, the severity of neurological deficits correlated with grey matter volumes in similar, predominantly subcortical regions. In contrast, the severity of neurological deficits did not correlate with the volume of white matter hyperintensities, calculated using an automated lesion segmentation algorithm. Using tract-based spatial statistics, increasing neurological severity in chronically-treated patients was associated with decreasing axial diffusivity in white matter tracts whereas increasing serum non-caeruloplasmin-bound ('free') copper and active disease were associated with distinct patterns of increasing mean, axial and radial diffusivity. Whole-brain quantitative susceptibility mapping identified increased iron deposition in the putamen, cingulate and medial frontal cortices of patients with neurological presentations relative to those with hepatic presentations and neurological severity was associated with iron deposition in widespread cortical regions in chronically-treated patients. Our data indicate that composite measures of subcortical atrophy provide useful prognostic biomarkers, whereas abnormal mean, axial and radial diffusivity are promising monitoring biomarkers. Finally, deposition of brain iron in response to copper accumulation may directly contribute to neurodegeneration in Wilson's disease

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 Îźm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 Îźm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 Îźm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    Probing the close environment of young stellar objects with interferometry

    Full text link
    The study of Young Stellar Objects (YSOs) is one of the most exciting topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical interferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Interferometer, the Large Binocular Telescope or 'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large Telescope Interferometer Challenges for the future

    Surface features, rotation and atmospheric variability of ultra cool dwarfs

    Get PDF
    Photometric I band light curves of 21 ultra cool M and L dwarfs are presented. Variability with amplitudes of 0.01 to 0.055 magnitudes (RMS) with typical timescales of an hour to several hours are discovered in half of these objects. Periodic variability is discovered in a few cases, but interestingly several variable objects show no significant periods, even though the observations were almost certainly sensitive to the expected rotation periods. It is argued that in these cases the variability is due to the evolution of the surface features on timescales of a few hours. This is supported in the case of 2M1145 for which no common period is found in two separate light curves. It is speculated that these features are photospheric dust clouds, with their evolution possibly driven by rotation and turbulence. An alternative possibility is magnetically-induced surface features. However, chromospheric activity undergoes a sharp decrease between M7 and L1, whereas a greater occurrence of variability is observed in objects later than M9, lending support to the dust interpretation.Comment: To appear in "Ultracool Dwarf Stars" (Lecture Notes in Physics), H.R.A. Jones, I. Steele (eds), Springer-Verlag, 2001. Also available from http://www.mpia-hd.mpg.de/homes/calj/ultra.htm

    SPECULOOS exoplanet search and its prototype on TRAPPIST

    Full text link
    One of the most significant goals of modern science is establishing whether life exists around other suns. The most direct path towards its achievement is the detection and atmospheric characterization of terrestrial exoplanets with potentially habitable surface conditions. The nearest ultracool dwarfs (UCDs), i.e. very-low-mass stars and brown dwarfs with effective temperatures lower than 2700 K, represent a unique opportunity to reach this goal within the next decade. The potential of the transit method for detecting potentially habitable Earth-sized planets around these objects is drastically increased compared to Earth-Sun analogs. Furthermore, only a terrestrial planet transiting a nearby UCD would be amenable for a thorough atmospheric characterization, including the search for possible biosignatures, with near-future facilities such as the James Webb Space Telescope. In this chapter, we first describe the physical properties of UCDs as well as the unique potential they offer for the detection of potentially habitable Earth-sized planets suitable for atmospheric characterization. Then, we present the SPECULOOS ground-based transit survey, that will search for Earth-sized planets transiting the nearest UCDs, as well as its prototype survey on the TRAPPIST telescopes. We conclude by discussing the prospects offered by the recent detection by this prototype survey of a system of seven temperate Earth-sized planets transiting a nearby UCD, TRAPPIST-1.Comment: Submitted as a chapter in the "Handbook of Exoplanets" (editors: H. Deeg & J.A. Belmonte; Section Editor: N. Narita). 16 pages, 4 figure

    Use of antihypertensive medications in pregnancy and the risk of adverse perinatal outcomes: McMaster Outcome Study of Hypertension In Pregnancy 2 (MOS HIP 2)

    Get PDF
    BACKGROUND: Uncertainty remains about the potential harmful effects of antihypertensive therapy on the developing fetus, especially for beta-blockers (βb). METHODS: We prospectively enrolled all singleton women with a blood pressure ≥ 140/90 mm Hg during pregnancy. The main analysis included 1948 women with all forms of hypertension and compared the use of βb drugs, non-βb drugs or a combination of both, to no treatment. The primary study outcome was a composite of the diseases of prematurity, need for assisted ventilation for greater than 1 day, or perinatal death. A sub-group analysis evaluated the four treatment options among 583 singleton women with chronic hypertension before 20 weeks gestation. RESULTS: In the main analysis, no association was observed between βb use and the primary composite outcome [adjusted odds ratio (OR) 1.4, 95% CI 0.9–2.2], while an association was seen with non-βb therapy (OR 5.0, 95% CI 2.6–9.6) and combination therapy (OR 2.9, 95% CI 1.8–4.7). In the sub-group of 583 women with hypertension before 20 weeks, use of a non-βb drug (OR 4.9, 95% CI 1.7–14.2) or combination therapy (OR 2.9. 95% CI 1.1–7.7) was significantly associated with the primary composite outcome, while βb monotherapy was not (OR 1.4, 95% CI 0.6–3.4). CONCLUSIONS: Maternal use of antihypertensive medications other than βbs was associated with both major perinatal morbidity and mortality, while βb monotherapy was not. The combined use of βb and non-βb medications demonstrated the strongest association. Before definitive conclusions can be drawn, a large multicentre randomized controlled trial is needed to address the issues of both maternal efficacy and fetal safety with the use of one or more antihypertensive agents in pregnancy

    Gravitational Waves from Gravitational Collapse

    Get PDF
    Gravitational wave emission from the gravitational collapse of massive stars has been studied for more than three decades. Current state of the art numerical investigations of collapse include those that use progenitors with realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non--axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org
    • …
    corecore