52 research outputs found

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Neonatal mortality: an invisible and marginalised trauma

    Get PDF
    Neonatal mortality is a major health problem in low and middle income countries and the rate of improvement of newborn survival is slow. This article is a review of the PhD thesis by Mats Målqvist, titled ‘Who can save the unseen – Studies on neonatal mortality in Quang Ninh province, Vietnam,’ from Uppsala University. The thesis aims to investigate structural barriers to newborn health improvements and determinants of neonatal death. The findings reveal a severe under-reporting of neonatal deaths in the official health statistics in Quang Ninh province in northern Vietnam. The neonatal mortality rate (NMR) found was four times higher than what was reported to the Ministry of Health. This underestimation of the problem inhibits adequate interventions and efforts to improve the survival of newborns and highlights the invisibility of this vulnerable group

    Soil-Transmitted Helminth Reinfection after Drug Treatment: A Systematic Review and Meta-Analysis

    Get PDF
    Infections with soil-transmitted helminths (the roundworm Ascaris lumbricoides, the whipworm Trichuris trichiura, and hookworm) affect over 1 billion people, particularly rural communities in the developing world. The global strategy to control soil-transmitted helminth infections is ‘preventive chemotherapy’, which means large-scale administration of anthelmintic drugs to at-risk populations. However, because reinfection occurs after treatment, ‘preventive chemotherapy’ must be repeated regularly. Our systematic review and meta-analysis found that at 3, 6, and 12 months after treatment, A. lumbricoides prevalence reached 26% (95% confidence interval (CI): 16–43%), 68% (95% CI: 60–76%) and 94% (95% CI: 88–100%) of pretreatment levels, respectively. For T. trichiura, respective reinfection prevalence at these time points were 36% (95% CI: 28–47%), 67% (95% CI: 42–100%), and 82% (95% CI: 62–100%); and for hookworm, 30% (95% CI: 26–34%), 55% (95% CI: 34–87%), and 57% (95% CI: 49–67%). Prevalence and intensity of reinfection were positively correlated with pretreatment infection status. Our results suggest a frequent anthelmintic drug administration to maximize the benefit of preventive chemotherapy. Moreover, an integrated control strategy, consisting of preventive chemotherapy combined with health education and environmental sanitation is needed to interrupt transmission of soil-transmitted helminths

    Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review

    Get PDF
    Organic species are an important but poorly characterized constituent of airborne particulate matter. A quantitative understanding of the organic fraction of particles (organic aerosol, OA) is necessary to reduce some of the largest uncertainties that confound the assessment of the radiative forcing of climate and air quality management policies. In recent years, aerosol mass spectrometry has been increasingly relied upon for highly time-resolved characterization of OA chemistry and for elucidation of aerosol sources and lifecycle processes. Aerodyne aerosol mass spectrometers (AMS) are particularly widely used, because of their ability to quantitatively characterize the size-resolved composition of submicron particles (PM1). AMS report the bulk composition and temporal variations of OA in the form of ensemble mass spectra (MS) acquired over short time intervals. Because each MS represents the linear superposition of the spectra of individual components weighed by their concentrations, multivariate factor analysis of the MS matrix has proved effective at retrieving OA factors that offer a quantitative and simplified description of the thousands of individual organic species. The sum of the factors accounts for nearly 100% of the OA mass and each individual factor typically corresponds to a large group of OA constituents with similar chemical composition and temporal behavior that are characteristic of different sources and/or atmospheric processes. The application of this technique in aerosol mass spectrometry has grown rapidly in the last six years. Here we review multivariate factor analysis techniques applied to AMS and other aerosol mass spectrometers, and summarize key findings from field observations. Results that provide valuable information about aerosol sources and, in particular, secondary OA evolution on regional and global scales are highlighted. Advanced methods, for example a-priori constraints on factor mass spectra and the application of factor analysis to combined aerosol and gas phase data are discussed. Integrated analysis of worldwide OA factors is used to present a holistic regional and global description of OA. Finally, different ways in which OA factors can constrain global and regional models are discussed

    Association of mast cell-derived VEGF and proteases in dengue shock syndrome

    Get PDF
    Background: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase) and -related cytokines (IL-4, -9, and -17) between patients with differing severity of Dengue fever and healthy controls. Methodology/Principal Findings: The study was performed at Children\u27s Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF), Dengue hemorrhagic fever (DHF), and Dengue shock syndrome (DSS), as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. Conclusions: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity

    Agricultural uses of plant biostimulants

    Get PDF

    Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme

    No full text
    Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis

    Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme

    No full text
    Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis
    corecore