31 research outputs found

    Loop Quantum Gravity a la Aharonov-Bohm

    Full text link
    The state space of Loop Quantum Gravity admits a decomposition into orthogonal subspaces associated to diffeomorphism equivalence classes of spin-network graphs. In this paper I investigate the possibility of obtaining this state space from the quantization of a topological field theory with many degrees of freedom. The starting point is a 3-manifold with a network of defect-lines. A locally-flat connection on this manifold can have non-trivial holonomy around non-contractible loops. This is in fact the mathematical origin of the Aharonov-Bohm effect. I quantize this theory using standard field theoretical methods. The functional integral defining the scalar product is shown to reduce to a finite dimensional integral over moduli space. A non-trivial measure given by the Faddeev-Popov determinant is derived. I argue that the scalar product obtained coincides with the one used in Loop Quantum Gravity. I provide an explicit derivation in the case of a single defect-line, corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded

    Increased incidence of glucose disorders during pregnancy is not explained by pre-pregnancy obesity in London, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing incidence of impaired glucose tolerance (IGT), gestational diabetes (GDM) and type 2 diabetes (T2D) during pregnancy was hypothesized to be associated with increases in pre-pregnancy body mass index (BMI). The aims were to 1) determine the prevalence of IGT/GDM/T2 D over a 10 year period; 2) examine the relationship between maternal overweight/obesity and IGT/GDM/T2D; and 3) examine the extent to which maternal metabolic complications impact maternal and fetal pregnancy outcomes.</p> <p>Methods</p> <p>Data arose from a perinatal database which contains maternal characteristics and perinatal outcome for all singleton infants born in London, Canada between January 1, 2000 and December 31, 2009. Univariable and multivariable odds ratios (OR) were estimated using logistic regression with IGT/GDM/T2 D being the outcome of interest.</p> <p>Results</p> <p>A total of 36,597 women were included in the analyses. Population incidence of IGT, GDM and T2 D rose from 0.7%, 2.9% and 0.5% in 2000 to 1.2%, 4.2% and 0.9% in 2009. The univariable OR for IGT, GDM and T2 D were 1.65, 1.52 and 2.06, respectively, over the ten year period. After controlling for maternal age, parity and pre-pregnancy BMI the OR did not decrease. Although there was a positive relationship between pre-pregnancy BMI and prevalence of IGT/GDM/T2 D, this did not explain the time trends in the latter. Diagnosis of IGT/GDM/T2 D increased the risk of having an Apgar score <7 at 5 minutes, which was partially explained by gestational hypertension, high placental ratio, gestational age and large for gestational age babies.</p> <p>Conclusions</p> <p>We found a significant increase in the incidence of IGT/GDM/T2 D for the decade between 2000-2009 which was not explained by rising prevalence of maternal overweight/obesity.</p

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    A global experience‐sampling method study of well‐being during times of crisis: The CoCo project

    Get PDF
    We present a global experience-sampling method (ESM) study aimed at describing, predicting, and understanding individual differences in well-being during times of crisis such as the COVID-19 pandemic. This international ESM study is a collaborative effort of over 60 interdisciplinary researchers from around the world in the “Coping with Corona” (CoCo) project. The study comprises trait-, state-, and daily-level data of 7490 participants from over 20 countries (total ESM measurements = 207,263; total daily measurements = 73,295) collected between October 2021 and August 2022. We provide a brief overview of the theoretical background and aims of the study, present the applied methods (including a description of the study design, data collection procedures, data cleaning, and final sample), and discuss exemplary research questions to which these data can be applied. We end by inviting collaborations on the CoCo dataset

    Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies

    Get PDF
    The standard Cold Dark Matter (CDM) cosmological model provides a good description of a wide range of astrophysical and cosmological data. However, there are a few big open questions that make the standard model look like an approximation to a more realistic scenario yet to be found. In this paper, we list a few important goals that need to be addressed in the next decade, taking into account the current discordances between the different cosmological probes, such as the disagreement in the value of the Hubble constant H0, the σ8–S8 tension, and other less statistically significant anomalies. While these discordances can still be in part the result of systematic errors, their persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the necessity for new physics or generalisations beyond the standard model. In this paper, we focus on the 5.0 σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements. After showing the H0 evaluations made from different teams using different methods and geometric calibrations, we list a few interesting new physics models that could alleviate this tension and discuss how the next decade’s experiments will be crucial. Moreover, we focus on the tension of the Planck CMB data with weak lensing measurements and redshift surveys, about the value of the matter energy density m, and the amplitude or rate of the growth of structure (σ8, f σ8). We list a few interesting models proposed for alleviating this tension, and we discuss the importance of trying to fit a full array of data with a single model and not just one parameter at a time. Additionally, we present a wide range of other less discussed anomalies at a statistical significance level lower than the H0–S8 tensions which may also constitute hints towards new physics, and we discuss possible generic theoretical approaches that can collectively explain the non-standard nature of these signals. Finally, we give an overview of upgraded experiments and next-generation space missions and facilities on Earth that will be of crucial importance to address all these open questions
    corecore