258 research outputs found

    In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2

    Get PDF
    In vertebrates and bacteria, heparosan the precursor of heparin is synthesized by glycosyltransferases via the stepwise addition of UDP-N-acetylglucosamine and UDP-glucuronic acid. As heparin-like molecules represent a great interest in the pharmaceutical area, the cryptic Pasteurella multocida heparosan synthase PmHS2 found to catalyze heparosan synthesis using substrate analogs has been studied. In this paper, we report an efficient way to purify PmHS2 and to maintain its activity stable during 6 months storage at −80 °C using His-tag purification and a desalting step. In the presence of 1 mM of each nucleotide sugar, purified PmHS2 synthesized polymers up to an average molecular weight of 130 kDa. With 5 mM of UDP-GlcUA and 5 mM of UDP-GlcNAc, an optimal specific activity, from 3 to 6 h of incubation, was found to be about 0.145 nmol/μg/min, and polymers up to an average of 102 kDa were synthesized in 24 h. In this study, we show that the chain length distribution of heparosan polymers can be controlled by change of the initial nucleotide sugar concentration. It was observed that low substrate concentration favors the formation of high molecular weight heparosan polymer with a low polydispersity while high substrate concentration did the opposite. Similarities in the polymerization mechanism between PmHS2, PmHS1, and PmHAS are discussed

    The influence of P-glycoprotein expression and its inhibitors on the distribution of doxorubicin in breast tumors

    Get PDF
    Abstract Background Anti-cancer drugs access solid tumors via blood vessels, and must penetrate tumor tissue to reach all cancer cells. Previous studies have demonstrated steep gradients of decreasing doxorubicin fluorescence with increasing distance from blood vessels, such that many tumor cells are not exposed to drug. Studies using multilayered cell cultures show that increased P-glycoprotein (PgP) is associated with better penetration of doxorubicin, while PgP inhibitors decrease drug penetration in tumor tissue. Here we evaluate the effect of PgP expression on doxorubicin distribution in vivo. Methods Mice bearing tumor sublines with either high or low expression of PgP were treated with doxorubicin, with or without pre-treatment with the PgP inhibitors verapamil or PSC 833. The distribution of doxorubicin in relation to tumor blood vessels was quantified using immunofluorescence. Results Our results indicate greater uptake of doxorubicin by cells near blood vessels in wild type as compared to PgP-overexpressing tumors, and pre-treatment with verapamil or PSC 833 increased uptake in PgP-overexpressing tumors. However, there were steeper gradients of decreasing doxorubicin fluorescence in wild-type tumors compared to PgP overexpressing tumors, and treatment of PgP overexpressing tumors with PgP inhibitors led to steeper gradients and greater heterogeneity in the distribution of doxorubicin. Conclusion PgP inhibitors increase uptake of doxorubicin in cells close to blood vessels, have little effect on drug uptake into cells at intermediate distances, and might have a paradoxical effect to decrease doxorubicin uptake into distal cells. This effect probably contributes to the limited success of PgP inhibitors in clinical trials

    Interaction between Purkinje Cells and Inhibitory Interneurons May Create Adjustable Output Waveforms to Generate Timed Cerebellar Output

    Get PDF
    We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning

    Symmetry breaking in dynamical systems

    Get PDF
    Symmetry breaking bifurcations and dynamical systems have obtained a lot of attention over the last years. This has several reasons: real world applications give rise to systems with symmetry, steady state solutions and periodic orbits may have interesting patterns, symmetry changes the notion of structural stability and introduces degeneracies into the systems as well as geometric simplifications. Therefore symmetric systems are attractive to those who study specific applications as well as to those who are interested in a the abstract theory of dynamical systems. Dynamical systems fall into two classes, those with continuous time and those with discrete time. In this paper we study only the continuous case, although the discrete case is as interesting as the continuous one. Many global results were obtained for the discrete case. Our emphasis are heteroclinic cycles and some mechanisms to create them. We do not pursue the question of stability. Of course many studies have been made to give conditions which imply the existence and stability of such cycles. In contrast to systems without symmetry heteroclinic cycles can be structurally stable in the symmetric case. Sometimes the various solutions on the cycle get mapped onto each other by group elements. Then this cycle will reduce to a homoclinic orbit if we project the equation onto the orbit space. Therefore techniques to study homoclinic bifurcations become available. In recent years some efforts have been made to understand the behaviour of dynamical systems near points where the symmetry of the system was perturbed by outside influences. This can lead to very complicated dynamical behaviour, as was pointed out by several authors. We will discuss some of the technical difficulties which arise in these problems. Then we will review some recent results on a geometric approach to this problem near steady state bifurcation points

    Systematic review of beliefs, behaviours and influencing factors associated with disclosure of a mental health problem in the workplace

    Get PDF
    Stigma and discrimination present an important barrier to finding and keeping work for individuals with a mental health problem. This paper reviews evidence on: 1) employment-related disclosure beliefs and behaviours of people with a mental health problem; 2) factors associated with the disclosure of a mental health problem in the employment setting; 3) whether employers are less likely to hire applicants who disclose a mental health problem; and 4) factors influencing employers' hiring beliefs and behaviours towards job applicants with a mental health problem

    Gain through losses in nonlinear optics

    Get PDF
    Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organization, pattern formation and noise amplification across diverse disciplines, including physics, chemistry, engineering and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied. In the present review article, we summarize the principle results on modulation instabilities and parametric amplification in nonlinear optics, with special emphasis on optical fibres. We then review state-of-the-art research about a peculiar class of modulation instabilities and signal amplification processes induced by dissipation in nonlinear optical systems. Losses applied to certain parts of the spectrum counterintuitively lead to the exponential growth of the damped mode themselves, causing gain through losses. We discuss the concept of imaging of losses into gain, showing how to map a given spectral loss profile into a gain spectrum. We demonstrate with concrete examples that dissipation-induced modulation instability, apart from being of fundamental theoretical interest, may pave the way towards the design of a new class of tuneable fibre-based optical amplifiers, optical parametric oscillators, frequency comb sources and pulsed lasers

    DNA vaccination for prostate cancer: key concepts and considerations

    Get PDF
    While locally confined prostate cancer is associated with a low five year mortality rate, advanced or metastatic disease remains a major challenge for healthcare professionals to treat and is usually terminal. As such, there is a need for the development of new, efficacious therapies for prostate cancer. Immunotherapy represents a promising approach where the host’s immune system is harnessed to mount an anti-tumour effect, and the licensing of the first prostate cancer specific immunotherapy in 2010 has opened the door for other immunotherapies to gain regulatory approval. Among these strategies DNA vaccines are an attractive option in terms of their ability to elicit a highly specific, potent and wide-sweeping immune response. Several DNA vaccines have been tested for prostate cancer and while they have demonstrated a good safety profile they have faced problems with low efficacy and immunogenicity compared to other immunotherapeutic approaches. This review focuses on the positive aspects of DNA vaccines for prostate cancer that have been assessed in preclinical and clinical trials thus far and examines the key considerations that must be employed to improve the efficacy and immunogenicity of these vaccines
    corecore