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Abstract

While locally confined prostate cancer is associated with a low five year mortality
rate, advanced or metastatic disease remains a major challenge for healthcare
professionals to treat and is usually terminal. As such, there is a need for the
development of new, efficacious therapies for prostate cancer. Immunotherapy
represents a promising approach where the host’s immune system is harnessed to
mount an anti-tumour effect, and the licensing of the first prostate cancer specific
immunotherapy in 2010 has opened the door for other immunotherapies to gain
regulatory approval. Among these strategies DNA vaccines are an attractive option in
terms of their ability to elicit a highly specific, potent and wide-sweeping immune
response. Several DNA vaccines have been tested for prostate cancer and while they
have demonstrated a good safety profile they have faced problems with low efficacy
and immunogenicity compared to other immunotherapeutic approaches. This review
focuses on the positive aspects of DNA vaccines for prostate cancer that have been
assessed in preclinical and clinical trials thus far and examines the key considerations
that must be employed to improve the efficacy and immunogenicity of these vaccines.

Keywords: Prostate cancer; DNA vaccine; Prophylactic; Therapeutic; Tumour associated
antigens

Introduction
Prostate cancer represents a major challenge to healthcare and accounts for 25 %

of all new diagnoses in males in the UK annually [1]. Localised prostate cancer

may be treated with prostatectomy or radiotherapy, which aims to remove or re-

duce the tumour load and is associated with favourable overall survival [2, 3].

However, typically anywhere from 20–30 % of patients experience a recurrence or

present with locally advanced or metastatic disease [4]. The first line treatment for

these patients is androgen deprivation therapy (ADT) which is associated with un-

pleasant side-effects such as urinary and erectile dysfunction [1, 3], and after an

initial response, the majority of cases eventually progress to castration resistant

prostate cancer (CRPC). Docetaxel is the gold standard treatment for CRPC but is

not curative and is associated with only a moderate (2.4 months) survival advan-

tage [5, 6]. As such, there is a clinical need for newer, highly effective treatment

options for patients with CRPC.

Immunotherapy is a strategy for cancer treatment that has received increasing at-

tention over the last few decades. The goal of immunotherapy is to harness the
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immune system to mount a response against tumour associated antigens (TAAs),

normal proteins expressed by or upregulated in cancer cells [7]. In order to be suc-

cessful the vaccine must be capable of generating a tumour specific T cell response to

weakly immunogenic “self-antigens” [7, 8]. The vaccine must also overcome the

mechanisms of immune evasion employed by cancer cells, such as, the immunosup-

pressive microenvironment, downregulation of major histocompatibility complex

(MHC) antigen presentation, upregulation of regulatory T cells and co-inhibitory sig-

nalling pathways [8, 9].

Prostate cancer is an ideal candidate for immunotherapy for a number of reasons.

For example, the slow growing nature of cancer within the prostate [10] allows suffi-

cient time for the immune system to mount an anti-tumour response following a

prime/boost or multiple immunisation strategy. In addition, prostate cancer expresses

numerous TAAs which include the Prostate Specific Antigen (PSA) [11, 12], Prostatic

Acid Phosphatase (PAP) [13], Prostate Specific Membrane Antigen (PSMA) [12, 14],

Prostate Stem Cell Antigen (PSCA) [15] and Six Transmembrane Epithelial Antigen of

the Prostate (STEAP) [16]. All of these TAA’s provide multiple potential immunological

targets [17] and indeed the ideal combination of antigens has yet to be elucidated. Fur-

thermore, the presence of PSA in patient serum enables the malignancy to be detected

early and in some cases even before tumours are radiologically detectable [9]. This in

turn facilitates earlier treatment [18]. Circulating T cells that react with prostate TAAs

have previously been detected, which suggests that self-tolerance towards these anti-

gens can be overcome [18]. The prostate is considered to be a non-essential organ and

therefore immunological treatments utilising prostate TAAs will not cause acute off-

target toxicity [9, 18]. Finally and perhaps most importantly, the first prostate cancer

specific immunotherapy, Sipuleucel-T (Provenge®, Dendreon Corporation, Seattle,

WA), has recently been licensed by the US Food and Drug Administration (FDA) in

2010 for asymptomatic or minimally symptomatic CRPC [19]. Sipuleucel-T consists of

autologous peripheral blood mononuclear cells with antigen presenting dendritic cells

that have been activated ex vivo with a recombinant fusion protein (PA2024) consist-

ing of PAP linked to granulocyte-macrophage colony stimulating factor (GM-CSF)

[19]. In a phase III trial, CPRC patients receiving Sipuleucel-T had a 22 % reduction in

mortality [20]. The success of the therapeutic Sipuleucel–T has paved the way for

other immunotherapeutic prostate cancer vaccines to be granted regulatory approval

and enter the market.

Other immunotherapeutic cancer vaccine approaches which have been clinically

investigated for prostate cancer include the administration of whole tumour cells

[21], dendritic cells (DCs) loaded with peptides or tumour cell lysate [22], peptide

vaccines [23] and the administration of antibodies [24]. This review examines the

progress of DNA vaccines specifically for prostate cancer and focuses on the key

considerations required for successful development. Only the most recent studies

are included in this review to bring the reader up to date with the field. Clinical

trials that utilise DNA vaccines in prostate cancer therapeutically are summarised

in Table 1, while DNA vaccines administered prophylactically in preclinical models

prior to tumour challenge are summarised in Table 2. In addition, ongoing Phase

II or III clinical trials utilising DNA vaccines in prostate cancer are detailed in

Table 3.
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DNA vaccines

One of the key goals in a cancer vaccine is to induce a cell-mediated immune response,

primarily through the activation of TAA-specific cytotoxic T lymphocytes (CTLs).

Therapeutic responses arise from activation of these antigen specific CTLs which cause

destruction of TAA expressing cells. This could potentially eradicate disseminated de-

posits of prostate cancer for which current treatment options are limited following the

Table 1 Summary of therapeutic clinical trials utilising DNA vaccines for prostate cancer

Vaccine/ targeted
antigen

Phase trial/ number
of patients

Delivery
route

Immunological response/ clinical outcome/
PSA DT

Ref

PAP: pTVG-HP (100 μg)
with rhGM-CSF (200 μg)

Phase II
(NCT00849121)
N = 17

i.d No. with tripling of T-Cell
specific antibodies- Group
1: 3/8 Group 2: 6/8

[99]

No. with doubling of PSA
DT- Group 1: 3/8 Group 2: 4/9

PAP: pTVG-HP (100 μg,
500 μg or 1500 μg) with
GM-CSF (200 μg)

Phase I/IIa
(NCT00582140)
N = 22

i.d. No. with PAP-specific IFNγ-secreting
CD8+ T-cells- 3/22

[31]

No. with tripling of CD4+ and/or

CD8+ T-cell proliferation – 9/22

No. with doubling of PSA DT- 7/22

PSA: PROSTVAC with
GM-CSF (100 μg)

Phase II
(NCT00078585)
N = 125

s.c. Overall survival- PROSTVAC group:
25/82 Control: 7/40

[75]

Median survival- PROSTVAC group:
25.1 months Control: 16.6 months

PSA: Ad/PSA (106, 107,
108pfu)

Phase I (IND #9706)
N = 32

s.c. No. with anti-PSA T cell responses-
15/28

[74]

No. with increased PSA-DT- 13/28

PSA: pVAXrcPSAv531
(rhPSA) (50–1600 μg)

Phase I
(NCT00859729)
N = 15

i.d. with EP
(DERMAVAX)

No. with prolongation of PSA-DT
by at least 50 % during study- 4/15

[47]

PSMA: DOM-PSMA27
(800–3200 μg)

Phase I/II N = 30 i.m. with or
without EP

No. with detectable anti-PSMA27
CD8+ T cells response- 16/30

[48]

No. with doubling of PSA-DT- 14/30

Table 2 Summary of preclinical prophylactic prostate cancer tumour challenge studies utilising
DNA vaccines

Vaccine/ targeted antigen Model Delivery route Clinical outcome Ref

PSCA/STEAP: pCI-neo-mPSCA
and/or pCI-neo-mSTEAP1
(100 μg) prime plus MVA-mPSCA
and/or MVA-mSTEAP1 (1X107

pfu) boost

C57 BL/6 i.m. prime Significant reduction in
tumour volume

[17]

TRAMP C-1 i.p. boost Significant delay in time to
form tumours

hPSA: phPSA (50 μg) with or
without CpG

C57 BL/6 i.m. with EP Significant delay in appearance
of tumours

[46]

TRAMP C-1/hPSA Significantly prolonged survival

PSMA/PSCA/STEAP: rAd/PSMA,
rAD/PSCA, rAd/STEAP prime
(1X108 PFU); TRAMP C-1 pulsed
DCs (2X106 cells) boost

C57 BL/6 i.v. prime Tumour Growth Significantly
delayed

[112]

TRAMP C-1 s.c. boost

STEAP: mSTEAP DN A (2 μg)
prime with: mSTEAP DN A (2 μg)
or mSTEAP-VRP (106 IU) boost;
or mSTEAP-VRP (106 IU) prime
and boost

C57 BL/6 i.d. (gene gun) Significantly prolonged survival [56]

TRAMP C-2 s.c. Significantly delayed tumour
growth

Cole et al. Cancer Nanotechnology  (2015) 6:2 Page 3 of 23



onset of castrate resistance. It has been well documented that DNA vaccination is a

highly potent strategy for inducing both prophylactic and therapeutic responses [25].

However, in order for the desired antigen to be expressed the plasmid DNA needs to

be delivered to the nucleus of the cell. There is also a need to ensure that the DNA is

delivered to antigen-presenting cells (APCs), so that the antigen expressed in the cyto-

plasm can be presented via the MHC class I complex [26]. Presentation via the MHC

class I complex will result in a much more potent cell-mediated therapeutic immune

response. Additionally, APCs are capable of internalising and processing exogenous an-

tigens from neighbouring apoptotic cells that have been transfected. Such antigens are

again presented via the MHC class I pathway and this process is known as cross-

presentation [26]. DNA that is delivered to non-APCs will give rise to exogenous anti-

gens that activate the more common MHC class II pathway which is characterised by a

humoral response and a subsequent prophylactic action (Fig. 1).

DNA vaccines confer many advantages over conventional treatments: (1) DNA vac-

cines are capable of eliciting host humoral and cellular immunity, leading to a potent,

wide-sweeping immune response to TAAs [25]; (2) Genes encoding the full length of

the TAA can be introduced, ensuring that the correct post-translational modifications

occur in the cell, thus presenting multiple potential antigenic epitopes to the immune

system [27, 28]; (3) The TAAs confer high specificity which renders DNA vaccines safe

compared to conventional treatments [29] and safety has been demonstrated in animals

and in several clinical trials [30, 31]; (4) DNA is relatively easy to produce and purify

and is highly reproducible, therefore DNA vaccines should be cost-effective for large

scale manufacture [27, 29]; (5) Lastly, in contrast to conventional live attenuated vac-

cines there is no reversion risk to pathogenicity in vivo.

The worldwide DNA vaccine market is projected to increase to $2.7 billion by 2019,

yet there are only four commercially available DNA vaccines licensed for use and these

are in animals. Licensed vaccines include the West Nile-Innovator® DNA (Pfizer),

Apex®-IHN (Novartis Aqua Health), ONCEPT™ (Vical) and LifeTide® SW 5 (VGX

Animal Health). Of these DNA vaccines only ONCEPT™ has been licensed (2007) for

use in cancer, specifically for the treatment of malignant melanoma in dogs [32]. Des-

pite the promise shown by DNA vaccines in preclinical models, success has proven

Table 3 Summary of ongoing or unpublished clinical trials utilising DNA vaccines for prostate
cancer

Vaccine/ targeted antigen Phase trial/ estimated
enrolment

Delivery
route

Primary objectives Ref

PAP: Sipuleucel-T with or without
pTVG-HP (100 μg)/ rhGM-CSF
(200 μg)

Phase II (NCT01706458)
N = 30

i.d. PAP-specific Immunological
response

[113]

PAP: rhGM-CSF (200 μg) with or
without pTVG-HP (100 μg)

Phase II (NCT01341652)
N = 56

i.d. Metastasis-free survival [114]

PSA: PROSTVAC with or without
GM-CSF (100 μg)

Phase III (NCT01322490)
N = 1200

s.c. Overall Survival [77]

PSA: Flutamide with or without
PROSTVAC

Phase II (NCT00450463)
N = 53

s.c. Time to Treatment Failure [115]

PSA: Adenovirus/PSA (1X108 pfu
in gelfoam)

Phase II (NCT00583024)
N = 66

s.c. PSA-DT Response [76]

PSA: Adenovirus/PSA (1X108 pfu
in gelfoam) with or without ADT

Phase II (NCT00583752)
N = 70

s.c. PSA-DT Response [116]
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difficult to reproduce in larger animals and clinical trials [33]. This lack of efficacy is

thought to be due to low immunogenicity and cellular uptake of DNA. Nevertheless, if

the barriers preventing the translation of this therapy to humans can be overcome, the

impact of DNA vaccination on the treatment of cancer could be revolutionary.

In order to be efficacious, DNA must reach the cell nucleus in quantities sufficient to

produce enough antigen to overcome self-tolerance. After introduction to the host

there are a number of biological barriers to nuclear delivery that contribute to a low

clinical success rate. At the cell surface DNA must undergo internalisation across the

cell membrane, which frequently results in endosomal entrapment. In the endosome,

DNA is vulnerable to degradation by intracellular nucleases and must escape into the

cytoplasm. From the cytoplasm, the DNA must be actively transported into the cell nu-

cleus where the cell can begin to transcribe and translate the DNA to produce the anti-

gen of interest [34–36]. Vectors can be utilised to improve DNA delivery. Such vectors

can be employed to condense and protect DNA from clearance and degradation in

addition to overcoming the extra and intracellular barriers (Fig. 2).

Strategies to improve DNA vaccine efficacy

A number of factors contribute to the overall transfection rate and therefore efficacy of

each DNA vaccine. With a plethora of delivery platforms and strategies designed to im-

prove the potency of DNA vaccines, it is difficult to elucidate the optimum delivery

strategy for the “best” TAA. Few studies include a direct comparison between the effi-

cacy of a delivery system against the current gold standard, with most studies examin-

ing a new delivery vehicle against control groups receiving “naked” DNA or no

Fig. 1 Schematic representation of immune responses elicited following DNA vaccination. DNA may be
taken up by bystander cells (e.g., muscle cells, keratinocytes) or APCs at the site of immunisation resulting in
production of host-synthesised antigens capable of eliciting immune responses via both MHC‐I and MHC‐II
pathways. APCs have a central role in the induction of immunity following vaccination, either by direct
transfection of the APCs or cross-presentation through bystander cell associated exogenous antigens resulting
in presentation of antigen on MHC class-I molecules, eliciting CD8+ T cell expansion. Additionally, exogenous
antigens, secreted from bystander cells, captured and processed by APCs are presented via MHC class‐II
molecules resulting in CD4+ T cell expansion resulting in a cascade of cellular responses and B cell activation
and antibody production
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treatment. This makes it particularly difficult to evaluate the true potential of any new

delivery strategies. This is further complicated by discrepancies in experimental design

and evaluation, which render it almost impossible to directly compare the variety of

approaches employed.

Injection of “naked” DNA is the simplest delivery strategy and has been shown to in-

duce humoral and cellular immune responses when administered to mouse models

[37]. However, this strategy offers little protection to DNA and transfection rates are

significantly reduced when upscaled to human studies [30]. Several delivery approaches

are undergoing investigation to improve DNA vaccine efficacy. Delivery platforms can

be broadly classified as physical or non-physical (vector-based) methods, which can be

further subcategorised to either viral or non-viral. In addition to the DNA delivery plat-

form, consideration must be given to the immunisation protocol, the co-administration

of adjuvants, which may be used to modify the cellular environment, and to the origin

and combination of DNA delivered which may play a central role in the induction of a

potent immune response. This review shall introduce and provide a brief discussion of

the most recent developments in each field, but shall focus on the strategies that are

most applicable to prostate cancer.

Physical delivery methods

Physical delivery methods act to overcome the extracellular barriers to gene delivery

and/or to temporarily disrupt the membrane of target cells, allowing DNA entry. Tat-

tooing [38], micro-injection [39], gene gun [40], ultrasound [41] and electroporation

(EP) [42] have been described as physical methods for gene delivery. Of these, EP, gene

gun and ultrasound have been used for gene delivery in prostate cancer models.

Fig. 2 Schematic representation of extracellular and intracellular barriers to DNA delivery. DNA and DNA
complexes delivered in vivo must overcome a number of barriers to achieve successful gene expression in
the cell nucleus: (i) Endo and exonuclease degradation of DNA; (ii) Migration of DNA from the target tissue
into systemic circulation; (iii) Binding and aggregation of DNA via serum protein complexation; (iv) Immune
activation to delivered DNA; (v) Interaction and binding with erythrocytes; (vi) Clearance of DNA via spleen,
renal and hepatic systems; (vii) Migration of DNA through extracellular matrix in target organ; (viii) Cellular
uptake, mediated via endocytosis or passive entry; (ix) enzymatic degradation of DNA in lysosome;
(x) Nuclear localization of DNA for protein expression

Cole et al. Cancer Nanotechnology  (2015) 6:2 Page 6 of 23



Electroporation

EP is a technique whereby DNA is delivered intradermally (i.d.) or intramuscularly (i.m.)

to the target site and a short electrical pulse or series of electrical pulses are applied locally

to the area. This results in a transient destabilisation of cell membranes in the target tissue

[35]. EP has been well documented as a potent means of enhancing transgene delivery,

with antigen expression reported to increase up to 1000 fold [28, 43, 42]. Antigen specific

responses have also been detected 25 weeks post immunisation [44]. A favourable safety

profile also makes EP an attractive option for in vivo immunisation.

EP has been used to enhance DNA vaccine immunogenicity in several prostate cancer

preclinical models. For example, Roos et al. demonstrated a significant increase in PSA

specific CD8+ T cells circulating in peripheral blood following i.d. injection of only

10 μg pVax-PSA accompanied by EP compared to those receiving no EP in C57 BL/6

mice following 2 immunisations [45]. EP has also demonstrated efficacy and safety in a

number of clinical trials [12, 46, 47]. For example, in a phase I/II dose escalation trial,

patients with biochemically recurrent prostate cancer were immunised i.m. with

pDOM-PSMA, a DNA fusion vaccine encoding a PSMA epitope, PSMA27, and DOM,

a domain of fragment C a tetanus toxin, without (Arm I) or with (Arm II) EP [48].

Patients received a total of five immunisations at weeks 0, 4, 8, 24 and 48, with follow-

up recorded up to week 72. At week 24, 11 of the 15 patients from Arm I switched to

Arm II due to a significantly higher anti-DOM antibody response in patients receiving

EP [48]. Vaccination with or without EP was associated with significant increases in de-

tectable DOM-specific CD4+ and PSMA27-specific CD8+ T cells compared to baseline,

with a significant trend towards higher responses in those treated with EP up to week

24 [48]. Treatment was associated with a significant increase in PSA doubling time

(PSA-DT), an indication of disease progression, from 11.98 months pre-treatment to

16.82 months at 72 week follow-up, independent of whether the patient had received

EP or not. While the authors found in this case that vaccination and EP were well toler-

ated by patients, other reports have found that EP is associated with pain, inflammation

and bleeding, especially when given i.m. which could decrease clinical acceptability [49,

50]. It is likely that the delivery site (whether i.d. or i.m.) is key to the generation of the

immune response. For example, the high population of resident APCs in the skin have

increased the number of EP plus i.d. studies [42]. Eriksson et al. delivered pVAX plas-

mid encoding rhesus macaque PSA (rhPSA), pVAX/rhPSA, to patients with biochem-

ical evidence of prostate cancer relapse i.d. followed by EP with the DermaVax device

(BTX/Harvard Appartus) and monitored patients for evidence of decrease in PSA-DT

or generation of PSA-specific T cells [47]. However, no significant changes in PSA kin-

etics were observed in any patients and increased PSA-specific T cell reactivity was only

observed in patients in the highest dose cohorts (4 of 15) [47]. The authors speculated

that i.m. delivery elicits a more potent immunological response. However, as this is

more invasive it may be desirable to increase the potency of i.d. vaccination with higher

vaccine doses or with the use of adjuvants [47].

To conclude, EP is a well established means of enhancing transgene expression and

acts as an immune adjuvant [42] due to the inflammation and recruitment of DCs fol-

lowing application, largely due to local tissue damage. Damage is directly related to the

intensity of EP and higher intensities are associated with higher transfection efficacies

[42]. As such, there is a trade-off between increased efficacy and discomfort to the
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patient, with the latter being the rate-limiting factor [42]. Despite these concerns EP

has been used safely in a number of key prostate cancer clinical trials [47, 48], provid-

ing an encouraging platform for DNA vaccine delivery. The availability of commercially

produced EP devices also provides a convenient, reproducible means for researchers to

administer their vaccines in preclinical and clinical trials.

The gene gun

A second physical delivery strategy is the use of the “gene gun”, whereby naked DNA is

adhered to the surface of gold particles, which are accelerated under high pressure by a

ballistic device into the target tissue. Such high pressure is necessary to ensure penetra-

tion of cell membranes which is vital for intracellular DNA delivery [40]. The gene gun

has demonstrated superior gene expression compared to injection of naked DNA [51],

and is capable of enhancing specific humoral and cellular immunity [51]. In preclinical

trials the gene gun has also demonstrated comparable efficacy to EP in inducing a po-

tent cellular immune response following i.m. injection [52]. As such, the gene gun has

been used to induce antigen specific responses in several clinical trials [53, 54], most

notably to protect humans from influenza challenge [54]. However, its use as a delivery

agent in clinical trials for cancer treatment has been less successful, perhaps due to lim-

ited gene carrying capacity (~2 μg per dose), which often necessitates multiple immuni-

sations at different sites in the body, reducing patient compliance [52–54]. Despite this

dose limitation the gene gun is a simple and flexible device for in vivo gene delivery

and has been used for the delivery of prostate TAAs in several preclinical studies.

Gregor et al. [55] and Garcia-Hernandez et al. [56] have used the gene gun to deliver

prostate TAAs in murine preclinical studies and these are discussed subsequently.

To conclude, the gene gun is a flexible, fast and highly reproducible option for

in vivo gene delivery due to the availability of a commercial device (Helios Gene Gun,

Bio-Rad). The gene gun is however limited by the DNA carrying capacity, as well the

degree of tissue penetration, with penetration depths limited to 0.1 mm [40]. Therefore,

moving to larger animal models and humans may prove impractical.

Ultrasound

Although EP and gene gun have good efficacy in vivo there are newer, less invasive

physical delivery systems being developed. One such delivery enhancement strategy is

ultrasound. DNA is injected into the target tissue and ultrasonic waves are applied ex-

ternally, continually or in pulses, causing a transient, reversible increase in cell mem-

brane permeability, thus facilitating cellular entry of the DNA [41, 57]. Transfection

efficacy varies according to a number of factors including frequency, intensity and dur-

ation of application. However, optimal conditions have not yet been established and the

risk of cellular damage to the host tissue has not been fully elucidated [41]. Although

ultrasound has been shown to increase gene expression 10–15 fold in vivo compared to

“naked” DNA [39], levels of gene expression are still considerably lower than that

which can be achieved using either EP or gene gun approaches [39]. Nevertheless,

Yoshida et al. [58] utilised ultrasound to enhance delivery of mannose-modified bubble

lipoplexes containing ubiquitylated melanoma-related antigen (pUb-M) to APCs. In

combination with doxorubicin, this produced a robust CTL response following one im-

munisation and was able to significantly prolong the survival of C57 BL/6 mice with
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established solid B16 tumours [58]. This study highlights the potential of ultrasound to

improve the therapeutic response to TAAs in cancer models in vivo. To date, ultra-

sound has not been used to deliver TAAs in a preclinical prostate cancer model, how-

ever, several authors have employed ultrasound to enhance gene delivery to prostate

cancer tumours in vivo.

Duvshani-Eshet et al. utilised ultrasound to enhance delivery of anti-angiogenic

hemopexin-like domain fragment (PEX) genes to prostate tumours in vivo [59]. The

group inoculated C57 BL/6 mice with PC-3 tumour cells and when the tumours

reached 100 mm3 treatment was initiated with intratumoural (i.t.) injection of naked

PEX expressing plasmid (pPEX) with or without therapeutic ultrasound (TUS). Tumour

burden was monitored every 2 days for 28 days. Following a single application TUS

significantly decreased tumour weight and volume compared to control (no treatment),

0.65 ± 0.15 g compared to 1.05 ± 0.25 g and 1300 ± 250 mm3 compared to 2000 ±

300 mm3, respectively. This effect was significantly improved by the addition of an ultra-

sound contrast agent, Optison. Optison is a microbubble composed of an albumin shell

with a gas core used to enhance the ultrasound backscatter in the target tissue. Subse-

quent studies involved tumour implantation followed by weekly treatment for four weeks

with pPEX and Optison with or without TUS. Repeated treatments of both pPEX or

pPEX +Optison alongside TUS significantly reduced prostate tumour burden and growth

by 80 % compared to a single treatment and control (no TUS). This study demonstrated

the promise of ultrasound as a gene delivery strategy in cancer. However, while ultrasound

can be easily directed towards specific tissues it is not always possible to inject therapy i.t.

This limitation needs to be overcome before clinical translation of this delivery system

can be achieved.

To conclude, ultrasound is a promising delivery option for the future, particularly for

use in combination with other immunotherapeutic approaches. The non-invasive nature

of ultrasound makes it an ideal candidate as a physical delivery system. At present the

higher efficacy of other systems, such as EP, make them more appealing to researchers. EP

and the gene gun have been used for DNA vaccination in numerous clinical trials and

have well established safety profiles, however, ultrasound has not been evaluated to the

same extent and the long term toxicity and efficacy still require elucidation.

Conclusions and future considerations

Physical delivery systems use the application of force to overcome the extra- and intra-

cellular barriers to gene delivery. In the majority of systems this enables the bypassing

of endocytosis and allows cellular entry of DNA through physically formed pores in the

cell membrane. This leads to a rapid and sustained gene expression, thus, physical de-

livery systems represent a convenient and efficacious method for gene delivery in vivo.

The advantages and disadvantages of these systems are summarised in Table 4. Delivery

methods such as EP and the gene gun are well established in terms of efficacy, but are

invasive and require the need for specialist equipment and training. This makes them

less desirable for widespread vaccination use in a clinical setting. Ultrasound, while less

invasive, suffers from a lack of efficacy compared to these established techniques and

also requires specialist equipment. Further optimisation and investigation into the effi-

cacy and cytotoxicity of this technique is required before it can be considered for rou-

tine use in gene delivery trials. However, ultrasound may have a role in enhancing the
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efficacy of gene delivery protocols when used in combination with other techniques.

For example, Yamashita et al. [60] used a combination of EP and ultrasound, termed

electro-sonoporation, to deliver plasmid DNA coding the luciferase reporter gene and

mouse Interleukin-12 (mIL-12) to the quadriceps of mice. The group found that two

days post delivery, mice that had undergone electro-sonoporation demonstrated lucifer-

ase expression levels two-fold higher than those that had received electroporation alone

[60]. Likewise, levels of serum mIL-12 were found to be two-fold higher in mice treated

with electro-sonoporation, with gene expression still detectable 28 days post adminis-

tration [60].

This study highlights the potential in using a combination of delivery strategies to im-

prove gene expression. While it is commonplace to enhance the immune response

through the administration of biological or chemical adjuvants, new strategies are

emerging using a combination of physical delivery systems to synergistically increase

gene delivery [61–63]. These two-tier or combinational approaches are likely to yield a

more efficacious gene delivery and thus, may prove necessary in larger animal models

to produce sufficient amounts of antigen to overcome self-tolerance to TAAs.

DNA delivery vector

DNA delivery vectors can be broadly classified as viral or non-viral. DNA delivery vec-

tors enhance the uptake of DNA and protect it from the intracellular barriers to gene

delivery. This process involves condensing the DNA to facilitate endocytosis, masking

the negative charge of the DNA and protecting it from degradation by nucleases. In

addition, several delivery vectors are capable of directly trafficking DNA to the nucleus

thus enhancing gene expression.

Table 4 Summary of advantages and disadvantages of physical delivery strategies used in DNA
vaccination

Physical delivery strategy Advantages Disadvantages

Electroporation • High levels of transgene
expression

• Invasive

• Long-lasting gene expression • Need for specialist equipment and training

• Safety demonstrated in numerous
clinical trials

• Potential for tissue damage

• Commercially available delivery
devices

• Two-step delivery process

Gene Gun • High levels of transgene
expression

• Invasive

• Long-lasting gene expression • Limited DNA carrying capacity

• Safety demonstrated in clinical
trials

• Need for specialist equipment and
training

• Commercially available delivery
devices

• Often need for multiple administrations

• One-step delivery process • Low tissue penetration

Ultrasound • Non-invasive • Low levels of transgene expression

• Can be targeted to specific
organs easily

• Need for specialist equipment and training

• Two-step delivery process

• Safety not yet widely demonstrated in gene
therapy clinical trials
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Viral vectors

Several types of viruses have been utilised as delivery vectors for DNA vaccines includ-

ing adenoviruses (Ad) [64], adeno-associated viruses (AAVs) [65, 66], herpes simplex vi-

ruses (HSV) [67, 68], retroviruses [69], lentiviruses [70] and poxviruses [71]. Viruses

have specifically evolved to overcome the barriers presented to gene delivery and as

such, they are associated with high transfection efficacy and are the current gold stand-

ard for gene delivery [72]. A number of DNA vaccines using viral vectors have been

used in prostate cancer preclinical and clinical trials and have proven safe and effica-

cious [67, 73–75].

Lubaroff et al. [74] recently reported encouraging results from a Phase I trial utilising

an adenoviral vector to deliver DNA coding human PSA (Ad/PSA). Patients with evi-

dence of metastatic castrate resistant disease received 1 × 106, 1 × 107 or 1 × 108 CFU of

Ad/PSA subcutaneously (s.c.) either as an aqueous suspension or as a Gelfoam collagen

matrix [74]. Patients were then observed for adverse effects, and at days 14, 21 and 2,

4, 8 and 12 months returned for assessment and to allow evaluation of antibody or T

cell specific responses to PSA. The group reported that 34 % of patients experienced an

increase in detectable anti-PSA antibodies, while 68 % of patients developed anti-PSA

T cells [74]. In addition, 46 % of patients experienced an increase in PSA-DT. The re-

sults of this small but encouraging study resulted in the commencement of a Phase II

trial to assess the benefit of Ad/PSA in patients with recurrent prostate cancer [76], al-

though results have yet to be published.

To date, perhaps the most successful prostate cancer DNA vaccination platform

is that of the PSA-targeting vaccine, PROSTVAC, consisting of a prime-boost strat-

egy with recombinant vaccinia virus and fowlpox virus vectors expressing PSA and

a triad of co-stimulatory molecules, B7.1, ICAM-1 and LFA-3, known as TRICOM

[71]. The success of a phase II clinical trial in men with metastatic CRPC demon-

strated a survival benefit of 8.5 months in patients who received PROSTVAC-VF

plus GM-CSF [75]. This has now led to a randomised double-blind phase III

clinical trial [77].

Despite this success, a number of limitations have been highlighted with these

vectors including time-consuming production, uncertain reproducibility, limited car-

rying capacity of transgenes, safety concerns such as toxicity, dose-dependent im-

munogenicity and potential integration into the host genome causing oncogene

activation [36, 72]. Many groups continue to develop recombinant viral vectors due

to their efficacy in vivo, and many DNA vaccines with these vectors continue to be

brought to trial. However, there has been a shift towards creating new, non-viral vec-

tors for DNA vaccination.

Non-viral vectors

Non-viral vectors, while attractive in terms of reproducibility and safety, are limited by

low transfection efficacy in vivo. Existing vectors include cationic lipids, polymers and

peptides [72]. Due to their cationic charge these vectors often spontaneously condense

DNA to form smaller cationic nanoparticles in addition to enhancing endocytosis and

protecting DNA from degradation. Despite ease of production, these vectors continue

to suffer from a lack of efficacy compared to viral vectors in vivo and so the challenge

is to improve non-viral characteristics to overcome the barriers to gene delivery.
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Lipid/liposome delivery systems

Cationic lipids are capable of condensing DNA through electrostatic interactions into

small lipoplexes. These lipoplexes carry a positive surface charge which aids internalisa-

tion through cell membrane binding. However, highly charged particles have been dem-

onstrated to cause significant toxicity and aggregation with serum proteins which can

hinder efficacy in vivo. Some of these limitations have been addressed through the func-

tionalisation of liposomes by the addition of Poly-ethylene-glycol (PEG). PEG shields the

liposome, increases the circulation time and facilitates the addition of ligands to improve

targeting [78]. The addition of Mannose to liposomes has led to significant increases in

transfection of DCs and macrophages through targeting of the mannose receptor [79–81].

Targeting of APCs makes these vectors ideal for DNA vaccination, and mannosylated li-

posomes have been demonstrated to enhance gene expression and the antigen specific

immune response compared to non-mannosylated vectors [78, 79]. Liposome vectors

have not been used for DNA vaccination purposes with prostate TAAs to date.

Allen et al. [82] delivered lipoplexes containing the gene coding for the p75 neurotro-

phin receptor (p75NTR) i.t. to PC-3 xenografts implanted on SCID mice. p75NTR is a

known tumour suppressor gene in prostate cancer and therefore it was hypothesised

that transfection of established PC-3 tumours would result in an increase in cell apop-

tosis and a decrease in cell proliferation. The authors implanted SCID mice with 1x106

PC-3 cells s.c. and 5 days post implantation injected i.t. with Lipofectamine/ p75NTR

cDNA (1 μg, 5 μg or 10 μg) or Lipofectamine 3 times weekly for 5 weeks [82]. Tu-

mours treated with lipoplexes containing p75NTR cDNA were significantly smaller than

those treated with Lipofectamine or control (no treatment). In addition, tumour size

was reduced in a dose dependent manner with 5 μg or 10 μg of DNA decreasing

tumour volume significantly more than 1 μg of DNA [82]. The authors successfully

demonstrated the feasibility of this approach for gene therapy for prostate cancer. How-

ever, while it was demonstrated that the lipoplexes were capable of transfecting prostate

cancer cells in this model it is not always possible to administer i.t. in vivo, especially in

diseases such as prostate cancer where there may be disseminated disease. Therefore,

DNA vaccination protocols targeting prostate TAAs may be more relevant clinically,

and do not require systemic delivery.

In conclusion, liposomes enable enhanced transfection through complexation with

DNA, circumvent the tissue damage associated with physical delivery systems and do

not require additional specialist equipment. Liposomes can be modified to enhance sta-

bility, improve circulation times and target APCs, making them good candidates for

in vivo gene delivery. However, liposome vectors also continue to suffer from a lack of

efficacy compared to viral vectors and cellular toxicity remains an on-going problem. At-

tempts to reduce the limitations of unspecific cellular transfection and poor circulation

time through incorporation of PEG have also been undermined by the formation of PEG-

specific antibodies upon repeat administration [72]. Liposome vectors still require further

refinement before they become mainstream vectors for use in DNA vaccination.

Polymer delivery systems

Cationic polymers are also capable of condensing anionic DNA through electrostatic

interaction to form particles known as polyplexes, and have been extensively studied as

non-viral gene delivery agents. These synthetic polymers provide a simple method of
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gene delivery and are easily modified to accommodate other stabilising polymers, tar-

geting ligands or drug conjugates [83]. Polyethylenimine (PEI) and poly (L-lysine) (PLL)

have been the most widely studied cationic polymers. Although both PLL and PEI en-

hance DNA transfection, PEI is most effective. The large buffering capacity of PEI enables

efficient endosomal escape via the ‘proton sponge effect’ [83]. However, the main limita-

tion of these cationic polymers is that increased transfection efficacy is correlated to a

higher molecular weight that results in a substantial increase in toxicity [83–85]. Attempts

to reduce the toxicity of these polymers while maintaining the transfection efficacy are on-

going with varying success [86–88]. Polyplexes have not yet been used as non-viral vectors

for DNA vaccine delivery in prostate cancer models, however several polyplexes have

been used to deliver gene therapy to tumours in clinical and preclinical trials [89, 90].

Hence prostate cancer may benefit from gene therapy delivered in this manner.

Similar to liposomes, polymer carriers may be modified to contain mannose moieties

that mediate delivery to APCs [61, 91]. Kim et al. [61] described a novel, two-tiered de-

livery system designed to enhance gene delivery to DCs in the dermal layer for DNA

vaccination. The system utilised solid microneedles coated with a pH-responsive layer

designed to release polyplexes when inserted into skin. Following insertion and release

into the skin uptake to APCs may be accommodated by mannosylated polyplexes en-

coding an antigenic amyloid beta monomer, Aβ 1–42, which enhances APC uptake

through interaction with mannose receptors. A single immunisation of BALB/c mice

with 10 μg of DNA was sufficient to induce detectable Aβ-specific antibodies one-week

post immunisation. Five weeks following immunisation mice challenged with Aβ 1–42

peptide produced a rapid and robust Aβ-specific humoral response, demonstrating the

ability of this approach to induce a long-lasting antigen specific humoural response.

This type of approach may prove beneficial in DNA vaccines for prostate cancer, where

targeted transfection of APCs is key for the development of a robust cellular response

to eradicate antigen expressing tumour cells.

In conclusion, while polymers provide a stable, efficacious vector for targeted gene

delivery, further development is still required. Although unspecific cell targeting, poor

circulation time and non-specific interaction of polyplexes with serum proteins have

been largely improved through the incorporation of PEG and targeting ligands, cytotox-

icity remains the rate limiting factor in vivo. Further development of newer polymers,

not limited by a trade-off between efficacy and cytotoxicity is required before these vec-

tors can be used widely in clinical trials for DNA vaccination.

Peptide delivery systems

In 1988 it was discovered that HIV TAT trans-activating factor was able to traverse the

cell membrane and be taken up by a wide variety of cells [92]. This revelation led to

the development of a whole class of natural and synthetic peptides capable of delivering

cargo to a variety of cell types, known as cell penetrating peptides (CPPs) [93]. Further-

more, peptides are being developed that mimic viral sequences. These include peptides

that facilitate internalisation [94], endosomal escape [95], and nuclear localisation [96].

Such peptides are often rich in basic amino acids such as lysine and arginine which are

essential to condense DNA into nanoparticles via electrostatic interaction [95, 97]. The

advantages of these viral mimetic peptides include biocompatibility, low cytotoxicity

and versatility with respect to rational design resulting in tailored systems.
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Zhang et al. recently demonstrated the feasibility of this approach in a mouse pros-

tate cancer model where an in-house cationic peptide [K] 18P9, composed of 18 lysine

residues and a human CTL PSCA epitope, was used to condense a plasmid encoding

the full-length human PSCA (hPSCA) gene for immunisation. HLA-A2.1/Kb Tg mice

were immunized with 25 nmol of DNA 3 times at 2 weekly intervals. Effector cells

from the immunised mice were subsequently intravenously (i.v.) injected into tumour

bearing nude mice once per week and tumour growth monitored. These results showed

significant retardation in tumour growth in those receiving cells from peptide/DNA

vaccinated animals compared to those immunised with DNA alone, thus confirming

administration of the DNA vaccine complexed with this peptide elicited superior im-

mune responses in vivo [98].

Peptide delivery systems confer a level of targeting and safety profile that is far super-

ior to any other non-viral vehicle. Perhaps the drawback of peptide delivery systems lies

in systemic administration where accumulation in the liver is a frequent event. How-

ever, given that most DNA vaccination strategies require either i.m. or i.d. injection,

peptides are ideally placed to deliver their cargo to APCs and have the potential to fill

that delivery void.

Conclusions

Non-physical delivery methods carry the advantage of enhancing gene delivery in a

non-invasive means to patients without requiring specialist equipment. Amongst the

non-physical delivery systems viral vectors remain the gold standard in terms of effi-

cacy. For DNA vaccination in larger animals and humans high transfection rates are es-

sential, and as such, the extensive use and success of viral vectors for gene delivery in

clinical trials makes them the most attractive vector for in vivo protocols. This success

has led to the PSA-targeting DNA vaccine PROSTVAC entering Phase III clinical trials,

the first prostate cancer specific DNA vaccine to do so. Despite these advantages there

continues to be limitations over the safety, immunogenicity and carrying capacity of

these vectors. Thus, there is a need to develop new, non-viral vectors capable of produ-

cing similar transfection efficacies. Unfortunately these vectors suffer from high toxicity

and poor transfection rates in vivo, though modification with ligands to improve APC

uptake is promising for DNA vaccination. Peptide delivery vectors hold promise in

terms of being able to mimic viral characteristics for DNA delivery. However, there is

still a significant gap in acquiring the necessary pre-clinical data to validate the peptide

delivery of DNA TAAs.

Co-stimulatory adjuvants

Co-administering immune enhancing molecules at the site of DNA vaccination either

directly or encoded in plasmids is primarily designed to improve vaccine immunogen-

icity. Few studies directly compare the efficacy of DNA vaccines with and without adju-

vant making it difficult to deduce the benefits of co-administration. In addition, there is

little consensus as to whether these adjuvants should be delivered as soluble protein or

as plasmids, making direct comparison between studies examining the effect of adju-

vant problematic. The most commonly co-administered molecules include chemokines,

cytokines and bacterial toxins [48].
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GM-CSF is a cytokine commonly used as an adjuvant for DNA vaccination and has

been used in numerous clinical trials [30, 31, 73, 99]. In a Phase I/II trial, Mincheff

et al. demonstrated that 50 % of patients vaccinated i.d. at one weekly intervals with

100 μg of PSMA and CD86 encoding plasmid(s) showed signs of immunisation in the

form of delayed-type hypersensitivity (DTH). In contrast, 100 % of patients vaccinated

with PSMA and CD86 plasmids also receiving 40,000 IU of soluble GM-CSF i.d. showed

signs of DTH upon challenge [100]. While this study demonstrated that GM-CSF was

capable of enhancing the general immune response to DNA vaccination, it is unclear as to

whether GM-CSF enhanced the antigen specific response or improved patient outcomes.

As such, more studies directly comparing the effect of GM-CSF on the antigen-specific

cellular and humoral immune responses induced by prostate cancer DNA vaccines are ne-

cessary. Indeed, current studies with the PROSTVAC vaccine include a phase III random-

ized, double-blind trial to examine the effect with and without GM-CSF [77].

Several preclinical studies have demonstrated the benefits of the co-expression of

GM-CSF with DNA vaccines for tuberculosis [101], encephalitis [102], and melanoma

[103]. However, these studies highlighted that co-inoculation with plasmid GM-CSF

did not confer the same benefits, possibly due to unpredictable GM-CSF expression

and competition with plasmid DNA encoding antigens for cellular uptake. Therefore,

when considering the benefit of GM-CSF as an adjuvant it is crucial to consider the

mode of GM-CSF delivery and demonstrate a clear benefit of inclusion.

Xenogeneic DNA

A number of TAAs possess functional homologues in other animal species, where the

expression patterns and functions are similar to those of their human counterparts

[104, 105]. As well as providing suitable preclinical models for DNA vaccines in a “self”

model of prostate cancer, these xenoantigens have been used by groups in an effort to

increase the immunogenicity of DNA vaccines. As xenoantigens are highly homologous

to native peptides, they can be capable of eliciting a specific cross-reactive response to-

wards the host self-antigen that can overcome tolerance issues.

Johnson et al. immunised Lewis rats with naked pTVG-HP, a DNA plasmid encoding

full length human PAP (hPAP), at 2 weekly intervals, for up to six i.d. immunisations

with doses of 100 μg, 500 μg or 1500 μg of pTVG-HP [37]. Immunisation with pTVG-

HP elicited hPAP-specific CD4+ and CD8+ T cells at the lowest dose following two

immunisations. PAP-specific IgG antibodies were also detectable in all pTVG-HP

treated animals and levels increased with increasing DNA dose and frequency of immuni-

sations [37]. Further work from this group immunising rats with pTVG-RP, encoding rat

PAP (rPAP) elicited hPAP-specific T cell responses following 6 immunisations indicating a

larger number of immunisations are necessary to elicit a cross-reactive immune response

in this model [106].

To confirm the animals immunised with pTVG-RP elicited a rPAP specific response

in addition to hPAP specific responses splenocytes were isolated from the animals and

restimulated in vitro with hPAP or rPAP expressing DCs and the resultant levels of

interferon gamma (IFN-ϒ) were analysed. Immunisation with pTGV-RP did elicit a

rPAP-specific T cell response and a cross-reactive hPAP immune response. This indi-

cates that autologous PAP antigen is capable of overcoming tolerance to autologous
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PAP [106]. Based on these preclinical data, and using the same immunisation schedule,

the group carried out a Phase I/IIa clinical trial in 22 patients with D0 prostate cancer

[31]. Patients were immunised with pTVG-HP, a self-antigen in humans. Responses

were found in 9 of the 22 patients with a tripling in PAP-specific CD4+ or CD8+ T cell

responses, and 7 of the 22 patients experienced at least doubling of the PSA-DT [31].

Upon completion of the initial study, two patients who had developed CD8+ T-cell

responses to PAP received monthly booster vaccinations of 100 μg pTVG-HP to deter-

mine whether this could augment the initial immune response [107]. Prior to continu-

ation of treatment neither patient had residual, detectable PAP-specific T cells, and

upon only two booster immunisations one patient developed detectable levels of CD4+

and CD8+ PAP-specific T cells suggesting that further immunisations could indeed

prove beneficial [107].

The group hypothesised that immunisation with a xenoantigen may require lower

numbers of immunisations to elicit immune responses against the host antigen, and

carried out immunisation of Lewis rats with pTVG-HP to determine whether rPAP

could be targeted through a cross-reactivity to immunisation with the human antigen

[108]. The group found that despite the high homology between rat and human PAP

peptides the xenoantigen was not capable of eliciting a cross-reactive immune response

to native rPAP [108], suggesting that vaccination of humans with xenoantigens may

not produce an advantageous immune response against the native antigen. The authors

suggested that this may not be the case with all xenoantigens, as the major determinant

of whether a foreign peptide is capable of inducing a cross-reactive immune response

may not be the overall homology of the foreign and self peptides, but the homology of

the epitopes presented to the immune system [108].

Following the promising results of their Phase I/IIa clinical trial and to evaluate the

benefit of further “booster” immunisations, 17 patients were recruited into a Phase II

clinical trial to assess the safety, immunological impact and clinical outcome of pTVG-

HP, administered with rhesus macaque GM-CSF (rhGM-CSF) as an adjuvant, in

patients with non-metastatic castrate resistant disease [99]. Patients were randomised

to receive 100 μg pTVG-HP with 200 μg rhGM-CSF i.d. biweekly for 12 weeks and

then subsequent boosters every 12 weeks until radiographic progression (Group 1) or

boosters every 2, 4 or 12 weeks depending on cellular immune response (Group 2).

From Group 1, 3 of 8 patients experienced at least a tripling in PAP-specific T cells

compared to 6 of 8 participants from Group 2 [99]. Additionally, 3 of 8 patients from

Group 1 and 4 of 9 patients from Group 2 experienced at least a doubling in their

PSA-DT [99]. Taken together these results suggest that further periodic booster immu-

nisations are of benefit to develop an immunological response and do not result in tol-

erance to the targeted antigen.

Several other groups have reported encouraging results using xenoantigens, Castelo-

Blano et al. treated mice bearing TRAMP-C2 prostate tumours over 10 days with 4

intraneoplastic injections of 1x107 PFU of oncolytic herpes simplex virus (oHSV) con-

structs expressing human PAP or mouse PAP (mPAP). Mice immunised with oHSV

expressing hPAP had significantly reduced tumour growth and prolonged survival com-

pared to those treated with oHSV expressing mPAP (p = 0.01) or control (p = 0.0008),

with a 10 day prolongation of survival to 39 days compared to the latter [67]. Further-

more Gregor et al. demonstrated that 5 intraperitoneal (i.p.) immunisations of mice
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with human PSMA (hPSMA) encoding DNA vaccine or protein was capable of indu-

cing autoantibodies against native mouse PSMA (mPSMA) as demonstrated by ELISA.

However, immunisation with native PSMA encoding DNA vaccine elicited no detect-

able increase in immune response to human or murine PSMA [55]. Moving from this

preclinical study Slovin et al. carried out a Phase I trial immunising patients with meta-

static prostate cancer at 3 week intervals i.m. with 100 μg, 1500 μg or 4000 μg of xeno-

geneic or homologous DNA vaccine coding PSMA [109]. Patients received three

immunisations and subsequently patients who had received homologous vaccination

were immunised a further three times with xenogeneic DNA The vaccine has proven

safe, however, no high titer antibodies specific to PSMA were produced by any patients,

though further analysis of T cell reactivity is ongoing but has yet to be published. As

such, further studies are required to elucidate whether xenogeneic or autologous DNA

is optimal in the clinical setting.

Prime / boost strategies

Many DNA vaccines have proven efficient at elicitation of immune responses, however,

in some cases these responses are suboptimal to provide protection against the antigen.

Thus, a number of immunisation regimens involving “priming” with DNA and subse-

quently “boosting” with a heterologous agent such as a different antigen delivery plat-

form or protein with the aim of improving immunogenicity have been investigated.

This approach has recently been explored using murine STEAP1 (mSTEAP1) and

murine PSCA (mPSCA) in mice for prophylaxis of prostate cancer [17]. The group

primed mice with recombinant DNA (mSTEAP1 and/or mPSCA) and boosted with

modified vaccinia virus ankara (MVA) vector expressing the same antigen(s). The group

found that in a tumour challenge study, mice immunised against either antigen using

this protocol demonstrated significantly inhibited tumour growth compared to control,

49.8 % following immunisation against mPSCA and 41.7 % against mSTEAP1 [17]. An-

other group immunised mice against mSTEAP using several vaccination protocols in-

cluding a gene gun mSTEAP prime/ s.c. mSTEAP-Virus Replicon Particle (VRP) boost;

gene gun mSTEAP prime/ s.c. mSTEAP DNA boost and mSTEAP-VRP prime and

boost [56]. Mice were then challenged 10 days post boost with TRAMP C-2 prostate

cancer cells. Tumour growth was monitored twice weekly and survival followed until

tumours reached volumes over 1000 mm3. While survival was significantly increased

with all mSTEAP vaccination protocols, the most significant effect was seen in mice

vaccinated with mSTEAP DNA and boosted with mSTEAP-VRP. In a phase I/II trial

Mincheff et al. found that all patients immunised with a replication deficient adenoviral

vector expressing PSMA and later boosted with plasmid PSMA showed signs of

immunisation (by DTH), while only 50 % of patients vaccinated with plasmid PSMA/

CD86 alone showed signs of immunisation [100]. Indeed PROSTVAC employs two dif-

ferent viral vectors, upon priming with the recombinant vaccinia virus expressing PSA,

neutralizing antibodies are formed to the vector, making subsequent boosting doses un-

feasible. However, boosting with a fowlpox vector overcomes this limitation [71] and

similar strategies should be implemented in the design of new DNA vaccines.

Priming with DNA and boosting with protein has also proven successful. Gregor

et al. immunised C57 BL/6 mice with a DNA vaccine encoding hPSMA once weekly
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for 5 weeks. Sera from these animals was subsequently analysed for affinity to mPSMA.

The mouse with the best response was subsequently boosted with 10 μg hPSMA pro-

tein and found resultant antibody specificity for hPSMA and cross-reactivity for

mPSMA [55]. A preclinical study carried out by Yong et al. demonstrated that C57 BL/

6 mice immunised with a DNA vaccine encoding gastrin-releasing peptide (GRP) (three

doses of 50 μg DNA), followed by boosting with HSP65-GRP6 protein resulted in in-

creased immunogenicity as compared to those receiving DNA vaccination alone, as in-

dicated by an increased titre of anti-GRP antibodies and inhibition of prostate tumour

growth (tumour weight 0.962 ± 0.462 and 1.536 ± 0.497 g respectively) [110].

Multivalent strategies

Several recent preclinical studies in rodents have focused on the effects of DNA vac-

cines coding multiple TAAs, the authors hypothesise that delivering multiple TAAs will

result in a wider and more potent immune response, targeting tumour cells with a syn-

ergistic effect [12]. Ferraro et al. used a dual antigen approach to immunise mice, PSA

and PSMA were co-delivered i.m. followed by EP. The immunisation elicited a robust

vaccine-specific CD4+ and CD8+ T cell response, indicating that the approach may

hold clinical promise [12]. In the tumour challenge study carried out by Krupa et al.

described previously [17], the DNA prime/MVA boost strategy significantly delayed

tumour growth upon challenge with TRAMP C-1 tumours. At day 55, the most signifi-

cant effect was seen in mice immunised with both mSTEAP1 and mPSCA, with

tumour volume 76.5 % lower than control mice vaccinated with empty plasmid vectors.

The group chose to immunise TRAMP mice (a more relevant and aggressive prostate

cancer model) using this prime/boost strategy. The vaccinated mice had significantly

reduced primary tumour burden and at 24 weeks showed lower histological grade tu-

mours, indicating that this approach is capable of breaking tolerance to self-antigens

[17]. While these preclinical data demonstrate promise for this strategy an earlier pre-

clinical study by Kim et al. primed mice with recombinant adenoviruses expressing

mSTEAP, mPSCA and mPSMA and then boosted with DCs pulsed with tumour lysate

[111]. This prime/boost strategy effectively delayed tumour growth following TRAMP

C-1 tumour challenge, however, only high levels of mSTEAP-specific CD8+ T cells were

found in the blood and spleens indicating that the anti-tumour effect was predominantly

due to mSTEAP vaccination. Furthermore, it was found that vaccinating against mSTEAP

alone was as effective as the triple antigen approach [112]. These results suggest that the

use of multiple TAAs, while demonstrating promise in some studies is not generalisable,

and in vitro and preclinical models should be used to determine the most effective com-

bination of TAAs for each individual delivery platform.

Conclusions
As discussed, DNA vaccination represents a promising platform capable of offering

both prophylactic protection and therapeutic treatment of prostate cancer. Currently

there are a significant number of pre-clinical and clinical trials underway utilising a

range of DNA plasmids, encoding a variety of TAAs and being delivered by an array of

delivery methods. However, there are a number of questions still to be answered in

order to achieve optimal immune responses clinically following vaccination. Primarily,
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is there an optimal dose of DNA and dosing regimen capable of provoking strong cellu-

lar and humoural responses to the antigens produced while avoiding exacerbation of

pro-inflammatory responses to the vaccine and delivery vehicles utilised themselves.

Additionally, improved formulation and superior delivery technologies are essential

for the enhancement of clinical data which has thus far proved disappointing when

compared to the promising results elicited in vitro and in rodent models in vivo. It is

becoming increasingly common for researchers to use a combination of delivery strat-

egies to achieve higher transfection rates in vivo. These two-tier delivery systems enable

synergy between the delivery systems and may prove necessary to achieve sufficient

gene expression to provoke robust cellular and humoral immune responses [58,

61–63]. Among these strategies the use of microneedles to localise DNA delivery into

the APC rich dermal layer has been commonly reported [61–63]. These devices provide

a non-invasive means of overcoming the Stratum Corneum and do not require special-

ist training for use. This provides a significant benefit over other delivery platforms,

especially where repeated administration or large scale vaccination is required. In con-

clusion, further investigation and advancement in the use of DNA vaccination for the

protection against, and treatment of prostate cancer is necessary before a fully validated

prostate cancer vaccine is clinically available.
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