180 research outputs found
Enhanced hyporheic exchange flow around woody debris does not increase nitrate reduction in a sandy streambed
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~50m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85%, 10% and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0-16µM h-1 and was highest in the top 30cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations
Genetic Pathway in Acquisition and Loss of Vancomycin Resistance in a Methicillin Resistant Staphylococcus aureus (MRSA) Strain of Clonal Type USA300
An isolate of the methicillin-resistant Staphylococcus aureus (MRSA) clone USA300 with reduced susceptibility to vancomycin (SG-R) (i.e, vancomycin-intermediate S. aureus, VISA) and its susceptible “parental” strain (SG-S) were recovered from a patient at the end and at the beginning of an unsuccessful vancomycin therapy. The VISA phenotype was unstable in vitro generating a susceptible revertant strain (SG-rev). The availability of these 3 isogenic strains allowed us to explore genetic correlates of antibiotic resistance as it emerged in vivo. Compared to the susceptible isolate, both the VISA and revertant strains carried the same point mutations in yycH, vraG, yvqF and lspA genes and a substantial deletion within an intergenic region. The revertant strain carried a single additional frameshift mutation in vraS which is part of two component regulatory system VraSR. VISA isolate SG-R showed complex alterations in phenotype: decreased susceptibility to other antibiotics, slow autolysis, abnormal cell division and increased thickness of cell wall. There was also altered expression of 239 genes including down-regulation of major virulence determinants. All phenotypic properties and gene expression profile returned to parental levels in the revertant strain. Introduction of wild type yvqF on a multicopy plasmid into the VISA strain caused loss of resistance along with loss of all the associated phenotypic changes. Introduction of the wild type vraSR into the revertant strain caused recovery of VISA type resistance. The yvqF/vraSR operon seems to function as an on/off switch: mutation in yvqF in strain SG-R turns on the vraSR system, which leads to increase in vancomycin resistance and down-regulation of virulence determinants. Mutation in vraS in the revertant strain turns off this regulatory system accompanied by loss of resistance and normal expression of virulence genes. Down-regulation of virulence genes may provide VISA strains with a “stealth” strategy to evade detection by the host immune system
Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients
Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (hαCGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of hαCGRP (2 μg/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (Vmean) in the middle cerebral artery (MCA), as well as the heart rate and blood pressure, were the outcome parameters. No change of rCBF was observed at the end of infusion [1.2% ± 1.7 with hαCGRP, vs. −1.6% ± 3.1 with placebo (mean ± SD)] (P = 0.43). Vmean in MCA decreased to 13.5% ± 3.6 with hαCGRP versus 0.6% ± 1.8 with placebo (P < 0.005). Since rCBF was unchanged, this indicates a dilation of the MCA. hαCGRP induced a decrease in MAP (12%) (P < 0.005) and an increase in heart rate (58%) (P < 0.0001). CGRP dilates cerebral arteries, but the effect is so small that it is unlikely to be the only mechanism of CGRP-induced migraine
Ecological Meltdown in the Firth of Clyde, Scotland: Two Centuries of Change in a Coastal Marine Ecosystem
BACKGROUND: The Firth of Clyde is a large inlet of the sea that extends over 100 km into Scotland\u27s west coast. METHODS: We compiled detailed fisheries landings data for this area and combined them with historical accounts to build a picture of change due to fishing activity over the last 200 years. FINDINGS: In the early 19th century, prior to the onset of industrial fishing, the Firth of Clyde supported diverse and productive fisheries for species such as herring (Clupea harengus, Clupeidae), cod (Gadus morhua, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, Scophthalmidae) and flounder (Platichthys flesus, Pleuronectidae). The 19th century saw increased demand for fish, which encouraged more indiscriminate methods of fishing such as bottom trawling. During the 1880s, fish landings began to decline, and upon the recommendation of local fishers and scientists, the Firth of Clyde was closed to large trawling vessels in 1889. This closure remained in place until 1962 when bottom trawling for Norway lobster (Nephrops norvegicus, Nephropidae) was approved in areas more than three nautical miles from the coast. During the 1960s and 1970s, landings of bottomfish increased as trawling intensified. The trawl closure within three nautical miles of the coast was repealed in 1984 under pressure from the industry. Thereafter, bottomfish landings went into terminal decline, with all species collapsing to zero or near zero landings by the early 21st century. Herring fisheries collapsed in the 1970s as more efficient mid-water trawls and fish finders were introduced, while a fishery for mid-water saithe (Pollachius virens, Gadidae) underwent a boom and bust shortly after discovery in the late 1960s. The only commercial fisheries that remain today are for Nephrops and scallops (Pecten maximus, Pectinidae). SIGNIFICANCE: The Firth of Clyde is a marine ecosystem nearing the endpoint of overfishing, a time when no species remain that are capable of sustaining commercial catches. The evidence suggests that trawl closures helped maintain productive fisheries through the mid-20th century, and their reopening precipitated collapse of bottomfish stocks. We argue that continued intensive bottom trawling for Nephrops with fine mesh nets will prevent the recovery of other species. This once diverse and highly productive environment will only be restored if trawl closures or other protected areas are re-introduced. The Firth of Clyde represents at a small scale a process that is occurring ocean-wide today, and its experience serves as a warning to others
The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development
In fungi and metazoans, the SCF-type Ubiquitin protein ligases (E3s) play a critical role in cell cycle regulation by degrading negative regulators, such as cell cycle-dependent kinase inhibitors (CKIs) at the G1-to-S-phase checkpoint. Here we report that FBL17, an Arabidopsis thaliana F-box protein, is involved in cell cycle regulation during male gametogenesis. FBL17 expression is strongly enhanced in plants co-expressing E2Fa and DPa, transcription factors that promote S-phase entry. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which generates the two sperm cells in mature A. thaliana pollen. Nonetheless, the single sperm cell-like cell in fbl17 mutants is functional but will exclusively fertilize the egg cell of the female gametophyte, giving rise to an embryo that will later abort, most likely due to the lack of functional endosperm. Seed abortion can, however, be overcome by mutations in FIE, a component of the Polycomb group complex, overall resembling loss-of-function mutations in the A. thaliana cyclin-dependent kinase CDKA;1. Finally we identified ASK11, as an SKP1-like partner protein of FBL17 and discuss a possible mechanism how SCFFBL17 may regulate cell division during male gametogenesis
Selection-Independent Generation of Gene Knockout Mouse Embryonic Stem Cells Using Zinc-Finger Nucleases
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10−6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells
Aerobic training protects cardiac function during advancing age: a meta-analysis of four decades of controlled studies
In contrast to younger athletes, there is comparatively less literature examining cardiac structure and function in older athletes. However, a progressive accumulation of studies during the past four decades offers a body of literature worthy of systematic scrutiny.
We conducted a systematic review, meta-analysis and meta-regression of controlled echocardiography studies comparing left ventricular (LV) structure and function in aerobically trained older athletes (> 45 years) with age-matched untrained controls, in addition to investigating the influence of chronological age.
statistic.
, 95% CI 0.05-1.86, p = 0.04). Meta-regression for chronological age identified that athlete-control differences, in the main, are maintained during advancing age.
Athletic older men have larger cardiac dimensions and enjoy more favourable cardiac function than healthy, non-athletic counterparts. Notably, the athlete groups maintain these effects during chronological ageing
Case-case-control study on factors associated with vanB vancomycin-resistant and vancomycin-susceptible enterococcal bacteraemia
BACKGROUND: Enterococci are a major cause of healthcare-associated infection. In Australia, vanB vancomycin-resistant enterococci (VRE) is the predominant genotype. There are limited data on the factors linked to vanB VRE bacteraemia. This study aimed to identify factors associated with vanB VRE bacteraemia, and compare them with those for vancomycin-susceptible enterococci (VSE) bacteraemia. METHODS: A case-case-control study was performed in two tertiary public hospitals in Victoria, Australia. VRE and VSE bacteraemia cases were compared with controls without evidence of enterococcal bacteraemia, but may have had infections due to other pathogens. RESULTS: All VRE isolates had vanB genotype. Factors associated with vanB VRE bacteraemia were urinary catheter use within the last 30 days (OR 2.86, 95% CI 1.09-7.53), an increase in duration of metronidazole therapy (OR 1.65, 95% CI 1.17-2.33), and a higher Chronic Disease Score specific for VRE (OR 1.70, 95% CI 1.05-2.77). Factors linked to VSE bacteraemia were a history of gastrointestinal disease (OR 2.29, 95% CI 1.05-4.99) and an increase in duration of metronidazole therapy (OR 1.23, 95% CI 1.02-1.48). Admission into the haematology/oncology unit was associated with lower odds of VSE bacteraemia (OR 0.08, 95% CI 0.01-0.74). CONCLUSIONS: This is the largest case-case-control study involving vanB VRE bacteraemia. Factors associated with the development of vanB VRE bacteraemia were different to those of VSE bacteraemia
- …
