23 research outputs found
A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury
In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)
Quantitative profiling of bile acids in blood, adipose tissue, intestine, and gall bladder samples using ultra high performance liquid chromatography-tandem mass spectrometry
An ultra high performance liquid chromatography tandem mass spectrometry method (UHPLC-MS/MS) was developed for the determination of 33 target and 28 unknown bile acids (BAs) in biological samples. Sixty-one BAs could be measured in 20 min using only a small amount of sample and with a simple sample preparation. The method proved to be very sensitive (limit of detection 5-350 pg/mL, lower limit of quantitation 0.1-2.6 ng/mL), linear (R2>0.99) and reproducible (typically CV <15 % in biological matrixes). The method was used to analyze human adipose tissue, plasma, and serum (from same subjects) and mouse serum, gall bladder, small intestine, and colon samples (from same animals). Cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, deoxycholic acid, and their conjugates (mainly glycine, but also taurine conjugates) were the main metabolites in human samples, and cholic acid, glycine cholic acid, and several taurine conjugates in mouse samples. Using the method, 28 unknown BAs could also be detected. UHPLC-MS/MS spectra, accurate mass, and tissue distribution suggested that nine of the unknown bile acids were taurine conjugates, 13 were glycine conjugates, and six were intact BAs, respectively. To our knowledge, this was the first time BAs were detected in adipose tissue. Results showed that 17 targeted BAs were found at ng/g level in human adipose tissue. Our findings give a novel insight of the endogenous role of BAs in adipose tissue and their role as biomarkers (e.g., in metabolic diseases)