630 research outputs found

    The Structure of the Mitotic Spindle and Nucleolus during Mitosis in the Amebo-Flagellate Naegleria

    Get PDF
    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division

    Multi analyte profiling and variability of inflammatory markers in blood and induced sputum in patients with stable COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed serial concentrations of multiple inflammatory mediators from serum and induced sputum obtained from patients with stable COPD and controls. The objective was to determine which proteins could be used as reliable biomarkers to assess COPD disease state and severity.</p> <p>Methods</p> <p>Forty-two subjects; 21 with stable COPD and 21 controls, were studied every 2 weeks over a 6-week period. Serum and induced sputum were obtained at each of 3 visits and concentrations of 19 serum and 22 sputum proteins were serially assessed using multiplex immunoassays. We used linear mixed effects models to test the distribution of proteins for an association with COPD and disease severity. Measures of within- and between-subject coefficients of variation were calculated for each of the proteins to assess reliability of measurement.</p> <p>Results</p> <p>There was significant variability in concentrations of all inflammatory proteins over time, and variability was greater for sputum proteins (median intra-subject coefficient of variation 0.58) compared to proteins measured in serum (median intra-subject coefficient of variation 0.32, P = 0.03). Of 19 serum proteins and 22 sputum proteins tested, only serum CRP, myeloperoxidase and VEGF and sputum IL-6, IL-8, TIMP-1, and VEGF showed acceptable intra and inter-patient reliability and were significantly associated with COPD, the severity of lung function impairment, and dyspnea.</p> <p>Conclusions</p> <p>Levels of many serum and sputum biomarkers cannot be reliably ascertained based on single measurements. Multiple measurements over time can give a more reliable and precise estimate of the inflammatory burden in clinically stable COPD patients.</p

    Relationship between the magnitude of intraocular pressure during an episode of acute elevation and retinal damage four weeks later in rats

    Get PDF
    PURPOSE: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats. METHODS: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10-100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (-6.04 to 2.72 log cd.s.m(-2)). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m(-2)) after 15 min of light adaptation (150 cd/m(2)). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology. RESULTS: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density. CONCLUSIONS: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a 'threshold' for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more

    The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Full text link
    We use numerical simulation to examine the possibility of a reversible liquid-liquid transition in supercooled water and related systems. In particular, for two atomistic models of water, we have computed free energies as functions of multiple order parameters, where one is density and another distinguishes crystal from liquid. For a range of temperatures and pressures, separate free energy basins for liquid and crystal are found, conditions of phase coexistence between these phases are demonstrated, and time scales for equilibration are determined. We find that at no range of temperatures and pressures is there more than a single liquid basin, even at conditions where amorphous behavior is unstable with respect to the crystal. We find a similar result for a related model of silicon. This result excludes the possibility of the proposed liquid-liquid critical point for the models we have studied. Further, we argue that behaviors others have attributed to a liquid-liquid transition in water and related systems are in fact reflections of transitions between liquid and crystal

    Ecological Meltdown in the Firth of Clyde, Scotland: Two Centuries of Change in a Coastal Marine Ecosystem

    Get PDF
    BACKGROUND: The Firth of Clyde is a large inlet of the sea that extends over 100 km into Scotland\u27s west coast. METHODS: We compiled detailed fisheries landings data for this area and combined them with historical accounts to build a picture of change due to fishing activity over the last 200 years. FINDINGS: In the early 19th century, prior to the onset of industrial fishing, the Firth of Clyde supported diverse and productive fisheries for species such as herring (Clupea harengus, Clupeidae), cod (Gadus morhua, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, Scophthalmidae) and flounder (Platichthys flesus, Pleuronectidae). The 19th century saw increased demand for fish, which encouraged more indiscriminate methods of fishing such as bottom trawling. During the 1880s, fish landings began to decline, and upon the recommendation of local fishers and scientists, the Firth of Clyde was closed to large trawling vessels in 1889. This closure remained in place until 1962 when bottom trawling for Norway lobster (Nephrops norvegicus, Nephropidae) was approved in areas more than three nautical miles from the coast. During the 1960s and 1970s, landings of bottomfish increased as trawling intensified. The trawl closure within three nautical miles of the coast was repealed in 1984 under pressure from the industry. Thereafter, bottomfish landings went into terminal decline, with all species collapsing to zero or near zero landings by the early 21st century. Herring fisheries collapsed in the 1970s as more efficient mid-water trawls and fish finders were introduced, while a fishery for mid-water saithe (Pollachius virens, Gadidae) underwent a boom and bust shortly after discovery in the late 1960s. The only commercial fisheries that remain today are for Nephrops and scallops (Pecten maximus, Pectinidae). SIGNIFICANCE: The Firth of Clyde is a marine ecosystem nearing the endpoint of overfishing, a time when no species remain that are capable of sustaining commercial catches. The evidence suggests that trawl closures helped maintain productive fisheries through the mid-20th century, and their reopening precipitated collapse of bottomfish stocks. We argue that continued intensive bottom trawling for Nephrops with fine mesh nets will prevent the recovery of other species. This once diverse and highly productive environment will only be restored if trawl closures or other protected areas are re-introduced. The Firth of Clyde represents at a small scale a process that is occurring ocean-wide today, and its experience serves as a warning to others

    A Linear Algebra Approach for Detecting Binomiality of Steady State Ideals of Reversible Chemical Reaction Networks

    Full text link
    Motivated by problems from Chemical Reaction Network Theory, we investigate whether steady state ideals of reversible reaction networks are generated by binomials. We take an algebraic approach considering, besides concentrations of species, also rate constants as indeterminates. This leads us to the concept of unconditional binomiality, meaning binomiality for all values of the rate constants. This concept is different from conditional binomiality that applies when rate constant values or relations among rate constants are given. We start by representing the generators of a steady state ideal as sums of binomials, which yields a corresponding coefficient matrix. On these grounds we propose an efficient algorithm for detecting unconditional binomiality. That algorithm uses exclusively elementary column and row operations on the coefficient matrix. We prove asymptotic worst case upper bounds on the time complexity of our algorithm. Furthermore, we experimentally compare its performance with other existing methods

    The multiple roles of myelin protein genes during the development of the oligodendrocyte

    Get PDF
    It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development

    How do validated measures of functional outcome compare with commonly used outcomes in administrative database research for lumbar spinal surgery?

    Get PDF
    Clinical interpretation of health services research based on administrative databases is limited by the lack of patient-reported functional outcome measures. Reoperation, as a surrogate measure for poor outcome, may be biased by preferences of patients and surgeons and may even be planned a priori. Other available administrative data outcomes, such as postoperative cross sectional imaging (PCSI), may better reflect changes in functional outcome. The purpose was to determine if postoperative events captured from administrative databases, namely reoperation and PCSI, reflect outcomes as derived by validated functional outcome measures (short form 36 scores, Oswestry disability index) for patients who underwent discretionary surgery for specific degenerative conditions of the lumbar spine such as disc herniation, spinal stenosis, degenerative spondylolisthesis, and isthmic spondylolisthesis. After reviewing the records of all patients surgically treated for disc herniation, spinal stenosis, degenerative spondylolisthesis, and isthmic spondylolisthesis at our institution, we recorded the occurrence of PCSI (MRI or CT-myelograms) and reoperations, as well as demographic, surgical, and functional outcome data. We determined how early (within 6 months) and intermediate (within 18 months) term events (PCSI and reoperations) were associated with changes in intermediate (minimum 1 year) and late (minimum 2 years) term functional outcome, respectively. We further evaluated how early (6–12 months) and intermediate (12–24 months) term changes in functional outcome were associated with the subsequent occurrence of intermediate (12–24 months) and late (beyond 24 months) term adverse events, respectively. From 148 surgically treated patients, we found no significant relationship between the occurrence of PCSI or reoperation and subsequent changes in functional outcome at intermediate or late term. Similarly, earlier changes in functional outcome did not have any significant relationship with subsequent occurrences of adverse events at intermediate or late term. Although it may be tempting to consider administrative database outcome measures as proxies for poor functional outcome, we cannot conclude that a significant relationship exists between the occurrence of PCSI or reoperation and changes in functional outcome

    Selecting Indicator Portfolios for Marine Species and Food Webs: A Puget Sound Case Study

    Get PDF
    Ecosystem-based management (EBM) has emerged as a promising approach for maintaining the benefits humans want and need from the ocean, yet concrete approaches for implementing EBM remain scarce. A key challenge lies in the development of indicators that can provide useful information on ecosystem status and trends, and assess progress towards management goals. In this paper, we describe a generalized framework for the methodical and transparent selection of ecosystem indicators. We apply the framework to the second largest estuary in the United States – Puget Sound, Washington – where one of the most advanced EBM processes is currently underway. Rather than introduce a new method, this paper integrates a variety of familiar approaches into one step-by-step approach that will lead to more consistent and reliable reporting on ecosystem condition. Importantly, we demonstrate how a framework linking indicators to policy goals, as well as a clearly defined indicator evaluation and scoring process, can result in a portfolio of useful and complementary indicators based on the needs of different users (e.g., policy makers and scientists). Although the set of indicators described in this paper is specific to marine species and food webs, we provide a general approach that could be applied to any set of management objectives or ecological system
    corecore