283 research outputs found

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    Effect of neuromuscular electrical stimulation on the recovery of people with COVID-19 admitted to the intensive care unit: A narrative review

    Get PDF
    The rehabilitation of patients with COVID-19 after prolonged treatment in the intensive care unit is often complex and challenging. Patients may develop a myriad of long-term multi-organ impairments, affecting the respiratory, cardiac, neurological, digestive and musculoskeletal systems. Skeletal muscle dysfunction of respiratory and limb muscles, commonly referred to as intensive care unit acquired weakness, occurs in approximately 40% of all patients admitted to intensive care. The impact on mobility and return to activities of daily living is severe. Furthermore, many patients experience ongoing symptoms of fatigue, weakness and shortness of breath, in what is being described as "long COVID". Neuromuscular electrical stimulation is a technique in which small electrical impulses are applied to skeletal muscle to cause contractions when voluntary muscle contraction is difficult or impossible. Neuromuscular electrical stimulation can prevent muscle atrophy, improve muscle strength and function, maintain blood flow and reduce oedema. This review examines the evidence, current guidelines, and proposed benefits of using neuromuscular electrical stimulation with patients admitted to the intensive care unit. Practical recommendations for using electrical muscle stimulation in patients with COVID-19 are provided, and suggestions for further research are proposed. Evidence suggests NMES may play a role in the weaning of patients from ventilators and can be continued in the post-acute and longer-term phases of recovery. As such, NMES may be a suitable treatment modality to implement within rehabilitation pathways for COVID-19, with consideration of the practical and safety issues highlighted within this review

    Implementing a quality improvement programme in palliative care in care homes: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of older people reach the end of life in care homes. The aim of this study is to explore the perceived benefits of, and barriers to, implementation of the Gold Standards Framework for Care Homes (GSFCH), a quality improvement programme in palliative care.</p> <p>Methods</p> <p>Nine care homes involved in the GSFCH took part. We conducted semi-structured interviews with nine care home managers, eight nurses, nine care assistants, eleven residents and seven of their family members. We used the Framework approach to qualitative analysis. The analysis was deductive based on the key tasks of the GSFCH, the 7Cs: communication, coordination, control of symptoms, continuity, continued learning, carer support, and care of the dying. This enabled us to consider benefits of, and barriers to, individual components of the programme, as well as of the programme as a whole.</p> <p>Results</p> <p>Perceived benefits of the GSFCH included: improved symptom control and team communication; finding helpful external support and expertise; increasing staff confidence; fostering residents' choice; and boosting the reputation of the home. Perceived barriers included: increased paperwork; lack of knowledge and understanding of end of life care; costs; and gaining the cooperation of GPs. Many of the tools and tasks in the GSFCH focus on improving communication. Participants described effective communication within the homes, and with external providers such as general practitioners and specialists in palliative care. However, many had experienced problems with general practitioners. Although staff described the benefits of supportive care registers, coding predicted stage of illness and advance care planning, which included improved communication, some felt the need for more experience of using these, and there were concerns about discussing death.</p> <p>Conclusions</p> <p>Most of the barriers described by participants are relevant to other interventions to improve end of life care in care homes. There is a need to investigate the impact of quality improvement programmes in care homes, such as the GSFCH, on a wider range of outcomes for residents and their families, and to monitor the sustainability of any resulting improvements. It is also important to explore the impact of the different components of these complex interventions.</p

    An Analyst's Traveling Salesman Theorem For Sets Of Dimension Larger Than One

    Get PDF
    In his 1990 Inventiones paper, P. Jones characterized subsets of rectifiable curves in the plane via a multiscale sum of β\beta-numbers. These β\beta-numbers are geometric quantities measuring how far a given set deviates from a best fitting line at each scale and location. Jones' result is a quantitative way of saying that a curve is rectifiable if and only if it has a tangent at almost every point. Moreover, computing this square sum for a curve returns the length of the curve up to multiplicative constant. K. Okikiolu extended his result from subsets of the plane to subsets of Euclidean space. G. David and S. Semmes extended the discussion to include sets of (integer) dimension larger than one, under the assumption of Ahlfors regularity and using a variant of Jones' β\beta numbers. In this paper we give a version of P. Jones' theorem for sets of arbitrary (integer) dimension lying in Euclidean space. We estimate the dd-dimensional Hausdorff measure of a set in terms of an analogous sum of β\beta-type numbers. There is no assumption of Ahlfors regularity, but rather, only of a lower bound on the Hausdorff content. We adapt David and Semmes' version of Jones' β\beta-numbers by redefining them using a Choquet integral. A key tool in the proof is G. David and T. Toro's parametrization of Reifenberg flat sets (with holes).Comment: Corrected more typos. There are still several typos and small mistakes in the published version of the paper, so the authors will maintain an up-to-date version on their webpages as we continue to correct the

    b-Initiated processes at the LHC: a reappraisal

    Full text link
    Several key processes at the LHC in the standard model and beyond that involve bb quarks, such as single-top, Higgs, and weak vector boson associated production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In the former, bb quarks appear only in the final state and are typically considered massive. In 5-flavor schemes, calculations include bb quarks in the initial state, are simpler and allow the resummation of possibly large initial state logarithms of the type logQ2mb2\log \frac{{\cal Q}^2}{m_b^2} into the bb parton distribution function (PDF), Q{\cal Q} being the typical scale of the hard process. In this work we critically reconsider the rationale for using 5-flavor improved schemes at the LHC. Our motivation stems from the observation that the effects of initial state logs are rarely very large in hadron collisions: 4-flavor computations are pertubatively well behaved and a substantial agreement between predictions in the two schemes is found. We identify two distinct reasons that explain this behaviour, i.e., the resummation of the initial state logarithms into the bb-PDF is relevant only at large Bjorken xx and the possibly large ratios Q2/mb2{\cal Q}^2/m_b^2's are always accompanied by universal phase space suppression factors. Our study paves the way to using both schemes for the same process so to exploit their complementary advantages for different observables, such as employing a 5-flavor scheme to accurately predict the total cross section at NNLO and the corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3

    Space-like (vs. time-like) collinear limits in QCD: is factorization violated?

    Get PDF
    We consider the singular behaviour of QCD scattering amplitudes in kinematical configurations where two or more momenta of the external partons become collinear. At the tree level, this behaviour is known to be controlled by factorization formulae in which the singular collinear factor is universal (process independent). We show that this strict (process-independent) factorization is not valid at one-loop and higher-loop orders in the case of the collinear limit in space-like regions (e.g., collinear radiation from initial-state partons). We introduce a generalized version of all-order collinear factorization, in which the space-like singular factors retain some dependence on the momentum and colour charge of the non-collinear partons. We present explicit results on one-loop and two-loop amplitudes for both the two-parton and multiparton collinear limits. At the level of square amplitudes and, more generally, cross sections in hadron--hadron collisions, the violation of strict collinear factorization has implications on the non-abelian structure of logarithmically-enhanced terms in perturbative calculations (starting from the next-to-next-to-leading order) and on various factorization issues of mass singularities (starting from the next-to-next-to-next-to-leading order).Comment: 81 pages, 5 figures, typos corrected in the text, few comments added and inclusion of NOTE ADDED on recent development

    Responses of marine benthic microalgae to elevated CO<inf>2</inf>

    Get PDF
    Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems. © 2011 Springer-Verlag

    Geographies of landscape: Representation, power and meaning

    Get PDF
    Green criminology has sought to blur the nature-culture binary and this article seeks to extend recent work by geographers writing on landscape to further our understanding of the shifting contours of the divide. The article begins by setting out these different approaches, before addressing how dynamics of surveillance and conquest are embedded in landscape photography. It then describes how the ways we visualize the Earth were reconfigured with the emergence of photography in the 19th century and how the world itself has been transformed into a target in our global media culture

    Degrees of tenant isolation for cloud-hosted software services : a cross-case analysis

    Get PDF
    A challenge, when implementing multi-tenancy in a cloud-hosted software service, is how to ensure that the performance and resource consumption of one tenant does not adversely affect other tenants. Software designers and architects must achieve an optimal degree of tenant isolation for their chosen application requirements. The objective of this research is to reveal the trade-offs, commonalities, and differences to be considered when implementing the required degree of tenant isolation. This research uses a cross-case analysis of selected open source cloud-hosted software engineering tools to empirically evaluate varying degrees of isolation between tenants. Our research reveals five commonalities across the case studies: disk space reduction, use of locking, low cloud resource consumption, customization and use of plug-in architecture, and choice of multi-tenancy pattern. Two of these common factors compromise tenant isolation. The degree of isolation is reduced when there is no strategy to reduce disk space and customization and plug-in architecture is not adopted. In contrast, the degree of isolation improves when careful consideration is given to how to handle a high workload, locking of data and processes is used to prevent clashes between multiple tenants and selection of appropriate multi-tenancy pattern. The research also revealed five case study differences: size of generated data, cloud resource consumption, sensitivity to workload changes, the effect of the software process, client latency and bandwidth, and type of software process. The degree of isolation is impaired, in our results, by the large size of generated data, high resource consumption by certain software processes, high or fluctuating workload, low client latency, and bandwidth when transferring multiple files between repositories. Additionally, this research provides a novel explanatory framework for (i) mapping tenant isolation to different software development processes, cloud resources and layers of the cloud stack; and (ii) explaining the different trade-offs to consider affecting tenant isolation (i.e. resource sharing, the number of users/requests, customizability, the size of generated data, the scope of control of the cloud application stack and business constraints) when implementing multi-tenant cloud-hosted software services. This research suggests that software architects have to pay attention to the trade-offs, commonalities, and differences we identify to achieve their degree of tenant isolation requirements
    corecore