180 research outputs found

    The respiratory chain inhibitor rotenone affects peroxisomal dynamics via its microtubule-destabilizing activity

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling is supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which – in contrast to its effect on peroxisomes - were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson’s disease, are discussed.We would like to acknowledge the support of T. A. Schrader, N. A. Bonekamp and J. Jordan (University of Castilla-La Mancha, Albacete, Spain). This work was supported by the Biotechnology and Biological Sciences Research Council (BB/K006231/1, BB/N01541X/1 to M.S.), the Portuguese Foundation for Science and Technology and FEDER/COMPETE (SFRH/BPD/37725/2007 to M.G.L), the University of Aveiro, PT and CLES, University of Exeter, UK. M.S. is supported by a Marie Curie Initial Training Network (ITN) action PerFuMe (316723)

    Incorporation of lipid nanosystems containing omega‑3 fatty acids and resveratrol in textile substrates for wound healing and anti‑inflammatory applications

    Get PDF
    In the present work, lipid nanosystems containing omega-3 fatty acid (nanostructured lipid carriers, NLCs) or omega-3 fatty acid and resveratrol (liposomes) were developed to improve cotton textile substrates as dressings with anti-inflammatory properties for wound healing applications. Lipid nanosystems were incorporated into woven, non-woven and knitted cotton substrates by exhaustion and impregnation. Based on physical–chemical characterization of the textile substrates, the textile structure and type of lipid nanosystems dictated the adsorption efficiency. In the case of NLCs, the woven substrate functionalized by exhaustion had a higher omega-3 release being the most promising for wound dressing application. Whereas for liposomes, the most adequate textile was the cationized knitted fabric functionalized by impregnation, that showed a more prolonged release profile of resveratrol.This work is financed by Project UID/CTM/00264/2019 of 2C2T - Centro de Ciencia e Tecnologia Textil, funded by National Founds through FCT/MCTES. The authors also acknowledge the Portuguese Foundation for Science and Technology (FCT) for financial support in the framework of the Strategic Funding UID/Multi/04546/2013 and UID/FIS/04650/2019 in the ambit of the project POCI-01-0145-FEDER-032651, co-financed by the European Regional Development Fund (ERDF), through COMPETE 2020, under Portugal 2020

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    Get PDF
    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease
    • …
    corecore