34 research outputs found

    Accurate peak list extraction from proteomic mass spectra for identification and profiling studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry is an essential technique in proteomics both to identify the proteins of a biological sample and to compare proteomic profiles of different samples. In both cases, the main phase of the data analysis is the procedure to extract the significant features from a mass spectrum. Its final output is the so-called peak list which contains the mass, the charge and the intensity of every detected biomolecule. The main steps of the peak list extraction procedure are usually preprocessing, peak detection, peak selection, charge determination and monoisotoping operation.</p> <p>Results</p> <p>This paper describes an original algorithm for peak list extraction from low and high resolution mass spectra. It has been developed principally to improve the precision of peak extraction in comparison to other reference algorithms. It contains many innovative features among which a sophisticated method for managing the overlapping isotopic distributions.</p> <p>Conclusions</p> <p>The performances of the basic version of the algorithm and of its optional functionalities have been evaluated in this paper on both SELDI-TOF, MALDI-TOF and ESI-FTICR ECD mass spectra. Executable files of MassSpec, a MATLAB implementation of the peak list extraction procedure for Windows and Linux systems, can be downloaded free of charge for nonprofit institutions from the following web site: <url>http://aimed11.unipv.it/MassSpec</url></p

    In Vitro Neutralisation of Rotavirus Infection by Two Broadly Specific Recombinant Monovalent Llama-Derived Antibody Fragments

    Get PDF
    Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains

    On the Effect of Thermodynamic Equilibrium on the Assembly Efficiency of Complex Multi-Layered Virus-Like Particles (VLP): the Case of Rotavirus VLP

    Get PDF
    Previous studies have reported the production of malformed virus-like-particles (VLP) in recombinant host systems. Here we computationally investigate the case of a large triple-layered rotavirus VLP (RLP). In vitro assembly, disassembly and reassembly data provides strong evidence of microscopic reversibility of RLP assembly. Light scattering experimental data also evidences a slow and reversible assembly untypical of kinetic traps, thus further strengthening the fidelity of a thermodynamically controlled assembly. In silico analysis further reveals that under favourable conditions particles distribution is dominated by structural subunits and completely built icosahedra, while other intermediates are present only at residual concentrations. Except for harshly unfavourable conditions, assembly yield is maximised when proteins are provided in the same VLP protein mass composition. The assembly yield decreases abruptly due to thermodynamic equilibrium when the VLP protein mass composition is not obeyed. The latter effect is more pronounced the higher the Gibbs free energy of subunit association is and the more complex the particle is. Overall this study shows that the correct formation of complex multi-layered VLPs is restricted to a narrow range of association energies and protein concentrations, thus the choice of the host system is critical for successful assembly. Likewise, the dynamic control of intracellular protein expression rates becomes very important to minimize wasted proteins

    Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior

    Get PDF
    Contains fulltext : 95738.pdf (publisher's version ) (Open Access)BACKGROUND: Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. RESULTS: We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. CONCLUSION: Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm

    Rate and duration of hospitalisation for acute pulmonary embolism in the real-world clinical practice of different countries : Analysis from the RIETE registry

    Get PDF
    publishersversionPeer reviewe

    The picobirnavirus crystal structure provides functional insights into virion assembly and cell entry

    No full text
    Double-stranded (ds) RNA virus particles are organized around a central icosahedral core capsid made of 120 identical subunits. This core capsid is unable to invade cells from outside, and animal dsRNA viruses have acquired surrounding capsid layers that are used to deliver a transcriptionally active core particle across the membrane during cell entry. In contrast, dsRNA viruses infecting primitive eukaryotes have only a simple core capsid, and as a consequence are transmitted only vertically. Here, we report the 3.4 Å X-ray structure of a picobirnavirus—an animal dsRNA virus associated with diarrhoea and gastroenteritis in humans. The structure shows a simple core capsid with a distinctive icosahedral arrangement, displaying 60 two-fold symmetric dimers of a coat protein (CP) with a new 3D-fold. We show that, as many non-enveloped animal viruses, CP undergoes an autoproteolytic cleavage, releasing a post-translationally modified peptide that remains associated with nucleic acid within the capsid. Our data also show that picobirnavirus particles are capable of disrupting biological membranes in vitro, indicating that its simple 120-subunits capsid has evolved animal cell invasion properties
    corecore