2,164 research outputs found
Multiple Ca2+ signaling pathways regulate intracellular Ca 2+ activity in human cardiac fibroblasts
Ca2+ signaling pathways are well studied in cardiac myocytes, but not in cardiac fibroblasts. The aim of the present study is to characterize Ca2+ signaling pathways in cultured human cardiac fibroblasts using confocal scanning microscope and RT-PCR techniques. It was found that spontaneous intracellular Ca2+ (Cai 2+) oscillations were present in about 29% of human cardiac fibroblasts, and the number of cells with Cai 2+ oscillations was increased to 57.3% by application of 3% fetal bovine serum. Cai 2+ oscillations were dependent on Ca2+ entry. Cai2+ oscillations were abolished by the store-operated Ca2+ (SOC) entry channel blocker La3+, the phospholipase C inhibitor U-73122, and the inositol trisphosphate receptors (IP3Rs) inhibitor 2-aminoethoxydiphenyl borate, but not by ryanodine. The IP3R agonist thimerosal enhanced Ca2+ i oscillations. Inhibition of plasma membrane Ca2+ pump (PMCA) and Na+-Ca2+ exchanger (NCX) also suppressed Ca i 2+ oscillations. In addition, the frequency of Ca i 2+ oscillations was reduced by nifedipine, and increased by Bay K8644 in cells with spontaneous Cai 2+ oscillations. RT-PCR revealed that mRNAs for IP3R1-3, SERCA1-3, CaV1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and Orai1-3, were readily detectable, but not RyRs. Our results demonstrate for the first time that spontaneous Cai 2+ oscillations are present in cultured human cardiac fibroblasts and are regulated by multiple Ca2+ pathways, which are not identical to those of the well-studied contractile cardiomyocytes. This study provides a base for future investigations into how Ca2+ signals regulate biological activity in human cardiac fibroblasts and cardiac remodeling under pathological conditions. © 2009 Wiley-Liss, Inc.postprin
Meta-Analyst: software for meta-analysis of binary, continuous and diagnostic data
<p>Abstract</p> <p>Background</p> <p>Meta-analysis is increasingly used as a key source of evidence synthesis to inform clinical practice. The theory and statistical foundations of meta-analysis continually evolve, providing solutions to many new and challenging problems. In practice, most meta-analyses are performed in general statistical packages or dedicated meta-analysis programs.</p> <p>Results</p> <p>Herein, we introduce Meta-Analyst, a novel, powerful, intuitive, and free meta-analysis program for the meta-analysis of a variety of problems. Meta-Analyst is implemented in C# atop of the Microsoft .NET framework, and features a graphical user interface. The software performs several meta-analysis and meta-regression models for binary and continuous outcomes, as well as analyses for diagnostic and prognostic test studies in the frequentist and Bayesian frameworks. Moreover, Meta-Analyst includes a flexible tool to edit and customize generated meta-analysis graphs (e.g., forest plots) and provides output in many formats (images, Adobe PDF, Microsoft Word-ready RTF). The software architecture employed allows for rapid changes to be made to either the Graphical User Interface (GUI) or to the analytic modules.</p> <p>We verified the numerical precision of Meta-Analyst by comparing its output with that from standard meta-analysis routines in Stata over a large database of 11,803 meta-analyses of binary outcome data, and 6,881 meta-analyses of continuous outcome data from the Cochrane Library of Systematic Reviews. Results from analyses of diagnostic and prognostic test studies have been verified in a limited number of meta-analyses versus MetaDisc and MetaTest. Bayesian statistical analyses use the OpenBUGS calculation engine (and are thus as accurate as the standalone OpenBUGS software).</p> <p>Conclusion</p> <p>We have developed and validated a new program for conducting meta-analyses that combines the advantages of existing software for this task.</p
Measurement of T1 Mapping in Patients With Cardiac Devices: Off-Resonance Error Extends Beyond Visual Artifact but Can Be Quantified and Corrected
Background: Measurement of myocardial T1 is increasingly incorporated into standard cardiovascular magnetic resonance (CMR) protocols, however accuracy may be reduced in patients with metallic cardiovascular implants. Measurement is feasible in segments free from visual artifact, but there may still be off-resonance induced error.
Aim: To quantify off-resonance induced T1 error in patients with metallic cardiovascular implants, and validate a method for error correction for a conventional MOLLI pulse sequence.
Methods: Twenty-four patients with cardiac implantable electronic devices (CIEDs: 46% permanent pacemakers, PPMs; 33% implantable loop recorders, ILRs; and 21% implantable cardioverter-defibrillators, ICDs); and 31 patients with aortic valve replacement (AVR) (45% metallic) were studied. Paired mid-myocardial short-axis MOLLI and single breath-hold off-resonance field maps were acquired at 1.5 T. T1 values were measured by AHA segment, and segments with visual artifact were excluded. T1 correction was applied using a published relationship between off-resonance and T1. The accuracy of the correction was assessed in 10 healthy volunteers by measuring T1 before and after external placement of an ICD generator next to the chest to generate off-resonance.
Results: T1 values in healthy volunteers with an ICD were underestimated compared to without (967 ± 52 vs. 997 ± 26 ms respectively, p = 0.0001), but were similar after correction (p = 0.57, residual difference 2 ± 27 ms). Artifact was visible in 4 ± 12, 42 ± 31, and 53 ± 27% of AHA segments in patients with ILRs, PPMs, and ICDs, respectively. In segments without artifact, T1 was underestimated by 63 ms (interquartile range: 7–143) per patient. The greatest error for patients with ILRs, PPMs and ICDs were 79, 146, and 191 ms, respectively. The presence of an AVR did not generate T1 error.
Conclusion: Even when there is no visual artifact, there is error in T1 in patients with CIEDs, but not AVRs. Off-resonance field map acquisition can detect error in measured T1, and a correction can be applied to quantify T1 MOLLI accurately
Monoclonal antibodies and Fc-fusion protein biologic medicines: A multinational cross-sectional investigation of accessibility and affordability in Asia Pacific regions between 2010 and 2020
Background: Monoclonal antibody (mAb) and Fc-fusion protein (FcP) are highly effective therapeutic biologics. We aimed to analyse consumption and expenditure trends in 14 Asia-Pacific countries/regions (APAC) and three benchmark countries (the UK, Canada, and the US).
Methods: We analysed 440 mAb and FcP biological products using the IQVIA-MIDAS global sales database. For each year between 2010 and 2020 inclusive, we used standard units (SU) sold per 1000 population and manufacture level price (standardised in 2019 US dollars) to evaluate consumption (accessibility) and expenditure (affordability). Changes of consumption and expenditure were estimated using compound annual growth rate (CAGR). Correlations between consumption, country's economic and health performance indicators were measured using Spearman correlation coefficient.
Findings: Between 2010 and 2020, CAGRs of consumption in each region ranged from 7% to 34% and the CAGRs of expenditure ranged from 9% to 31%. The median consumption of biologics was extremely low in lower-middle-income economies (0·29 SU/1000 population) compared with upper-middle-income economies (1·20), high-income economies (40·94) and benchmark countries (109·55), although the median CAGRs of biologics consumption in lower-middle-income economies (31%) was greater than upper-middle-income (14%), high-income economies (13%) and benchmark countries (9%). Consumption was correlated with GDP per capita [Spearman's rank correlation coefficient (r) = 0·75, p < 0·001], health expenditure as a percentage of total (r = 0·83, p < 0·001) and medical doctors’ density (r = 0·85, p < 0·001).
Interpretation: There have been significant increases in mAb and FcP biologics consumption and expenditure, however accessibility of biological medicines remains unequal and is largely correlated with country's income level.
Funding: This research was funded by NHMRC Project Grant GNT1157506 and GNT1196900; Enhanced Start-up Fund for new academic staff and Internal Research Fund, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong
Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis
Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD). There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH). DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30) or without (n=29) DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001), lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01), and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03) were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001) and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001) were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding
Subjective and objective outcome in congenital clubfoot; a comparative study of 204 children
<p>Abstract</p> <p>Background</p> <p>Outcome following management of congenital talipes equinovarus (clubfoot) can be assessed in a number of ways. Bjonness stated simply that <it>"the patient is the final judge of whether he has a good foot</it>"; a purely subjective assessment. Others have employed objective measures. Combining subjective evaluation with a more objective assessment of movement and position of the foot, is likely to give a more comprehensive picture of the final result of clubfoot. The purpose of this study was to compare subjective and objective outcome following management of clubfoot, and evaluate sex differences in outcome.</p> <p>Methods</p> <p>We used a patient-administered subjective assessment of outcome following treatment of clubfoot and compared it with objective anthropometry and range of movement of the ankle to assess and compare subjective and objective outcome in clubfoot. Statistical analysis was performed using Pearson correlation coefficients. Significance was tested using Student's t-test test.</p> <p>Results</p> <p>Objective outcome can be assessed using length of the foot, calf circumference and range of movement at the ankle. These are easy to measure, reproducible, and correlate well with subjective outcome. Objective outcome is comparable for boys and girls. However, subjectively, female patients and their parents are less happy with the results of management of clubfoot.</p> <p>Conclusion</p> <p>There is a correlation between the anthropometric measures and the subjective outcome and an objective grading can be designed using foot length, calf muscle bulk and range of movement at the ankle.</p
Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.
Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology
Childhood loneliness as a predictor of adolescent depressive symptoms: an 8-year longitudinal study
Childhood loneliness is characterised by children’s perceived dissatisfaction with aspects of their social relationships. This 8-year prospective study investigates whether loneliness in childhood predicts depressive symptoms in adolescence, controlling for early childhood indicators of emotional problems and a sociometric measure of peer social preference. 296 children were tested in the infant years of primary school (T1 5 years of age), in the upper primary school (T2 9 years of age) and in secondary school (T3 13 years of age). At T1, children completed the loneliness assessment and sociometric interview. Their teachers completed externalisation and internalisation rating scales for each child. At T2, children completed a loneliness assessment, a measure of depressive symptoms, and the sociometric interview. At T3, children completed the depressive symptom assessment. An SEM analysis showed that depressive symptoms in early adolescence (age 13) were predicted by reports of depressive symptoms at age 8, which were themselves predicted by internalisation in the infant school (5 years). The interactive effect of loneliness at 5 and 9, indicative of prolonged loneliness in childhood, also predicted depressive symptoms at age 13. Parent and peer-related loneliness at age 5 and 9, peer acceptance variables, and duration of parent loneliness did not predict depression. Our results suggest that enduring peer-related loneliness during childhood constitutes an interpersonal stressor that predisposes children to adolescent depressive symptoms. Possible mediators are discussed
Refractory periods and climate forcing in cholera dynamics
Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year(1,2). Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity(2-4). Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain ( El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods ( over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods ( under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Nino Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62876/1/nature03820.pd
- …