126 research outputs found

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Loneliness, social support and cardiovascular reactivity to laboratory stress

    No full text
    Self-reported or explicit loneliness and social support have been inconsistently associated with cardiovascular reactivity (CVR) to stress. The present study aimed to adapt an implicit measure of loneliness, and use it alongside the measures of explicit loneliness and social support, to investigate their correlations with CVR to laboratory stress. Twenty-five female volunteers aged between 18 and 39 years completed self-reported measures of loneliness and social support, and an Implicit Association Test (IAT) of loneliness. The systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) reactivity indices were measured in response to psychosocial stress induced in the laboratory. Functional support indices of social support were significantly correlated with CVR reactivity to stress. Interestingly, implicit, but not explicit, loneliness was significantly correlated with DBP reactivity after one of the stressors. No associations were found between structural support and CVR indices. Results are discussed in terms of validity of implicit versus explicit measures and possible factors that affect physiological outcomes

    Computational archaeology of the Pristionchus pacificus genome reveals evidence of horizontal gene transfers from insects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent sequencing of nematode genomes has laid the basis for comparative genomics approaches to study the impact of horizontal gene transfer (HGT) on the adaptation to new environments and the evolution of parasitism. In the beetle associated nematode <it>Pristionchus pacificus </it>HGT events were found to involve cellulase genes of microbial origin and Diapausin genes that are known from beetles, but not from other nematodes. The insect-to-nematode horizontal transfer is of special interest given that <it>P. pacificus </it>shows a tight association with insects.</p> <p>Results</p> <p>In this study we utilized the observation that horizontally transferred genes often exhibit codon usage patterns more similar to that of the donor than that of the acceptor genome. We introduced GC-normalized relative codon frequencies as a measure to detect characteristic features of <it>P. pacificus </it>orphan genes that show no homology to other nematode genes. We found that atypical codon usage is particularly prevalent in <it>P. pacificus </it>orphans. By comparing codon usage profiles of 71 species, we detected the most significant enrichment in insect-like codon usage profiles. In cross-species comparisons, we identified 509 HGT candidates that show a significantly higher similarity to insect-like profiles than genes with nematode homologs. The most abundant gene family among these genes are non-LTR retrotransposons. Speculating that retrotransposons might have served as carriers of foreign genetic material, we found a significant local clustering tendency of orphan genes in the vicinity of retrotransposons.</p> <p>Conclusions</p> <p>Our study combined codon usage bias, phylogenetic analysis, and genomic colocalization into a general picture of the computational archaeology of the <it>P. pacificus </it>genome and suggests that a substantial fraction of the gene repertoire is of insect origin. We propose that the <it>Pristionchus</it>-beetle association has facilitated HGT and discuss potential vectors of these events.</p

    Fine-Tuning Translation Kinetics Selection as the Driving Force of Codon Usage Bias in the Hepatitis A Virus Capsid

    Get PDF
    Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness

    Relationship between amino acid composition and gene expression in the mouse genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Codon bias is a phenomenon that refers to the differences in the frequencies of synonymous codons among different genes. In many organisms, natural selection is considered to be a cause of codon bias because codon usage in highly expressed genes is biased toward optimal codons. Methods have previously been developed to predict the expression level of genes from their nucleotide sequences, which is based on the observation that synonymous codon usage shows an overall bias toward a few codons called major codons. However, the relationship between codon bias and gene expression level, as proposed by the translation-selection model, is less evident in mammals.</p> <p>Findings</p> <p>We investigated the correlations between the expression levels of 1,182 mouse genes and amino acid composition, as well as between gene expression and codon preference. We found that a weak but significant correlation exists between gene expression levels and amino acid composition in mouse. In total, less than 10% of variation of expression levels is explained by amino acid components. We found the effect of codon preference on gene expression was weaker than the effect of amino acid composition, because no significant correlations were observed with respect to codon preference.</p> <p>Conclusion</p> <p>These results suggest that it is difficult to predict expression level from amino acid components or from codon bias in mouse.</p

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Identification of the Pangenome and Its Components in 14 Distinct Aggregatibacter actinomycetemcomitans Strains by Comparative Genomic Analysis

    Get PDF
    Aggregatibacter actinomycetemcomitans is genetically heterogeneous and comprises distinct clonal lineages that may have different virulence potentials. However, limited information of the strain-to-strain genomic variations is available.The genome sequences of 11 A. actinomycetemcomitans strains (serotypes a-f) were generated de novo, annotated and combined with three previously sequenced genomes (serotypes a-c) for comparative genomic analysis. Two major groups were identified; serotypes a, d, e, and f, and serotypes b and c. A serotype e strain was found to be distinct from both groups. The size of the pangenome was 3,301 genes, which included 2,034 core genes and 1,267 flexible genes. The number of core genes is estimated to stabilize at 2,060, while the size of the pangenome is estimated to increase by 16 genes with every additional strain sequenced in the future. Within each strain 16.7-29.4% of the genome belonged to the flexible gene pool. Between any two strains 0.4-19.5% of the genomes were different. The genomic differences were occasionally greater for strains of the same serotypes than strains of different serotypes. Furthermore, 171 genomic islands were identified. Cumulatively, 777 strain-specific genes were found on these islands and represented 61% of the flexible gene pool.Substantial genomic differences were detected among A. actinomycetemcomitans strains. Genomic islands account for more than half of the flexible genes. The phenotype and virulence of A. actinomycetemcomitans may not be defined by any single strain. Moreover, the genomic variation within each clonal lineage of A. actinomycetemcomitans (as defined by serotype grouping) may be greater than between clonal lineages. The large genomic data set in this study will be useful to further examine the molecular basis of variable virulence among A. actinomycetemcomitans strains

    Evolutionary Epidemiology of Drug-Resistance in Space

    Get PDF
    The spread of drug-resistant parasites erodes the efficacy of therapeutic treatments against many infectious diseases and is a major threat of the 21st century. The evolution of drug-resistance depends, among other things, on how the treatments are administered at the population level. “Resistance management” consists of finding optimal treatment strategies that both reduce the consequence of an infection at the individual host level, and limit the spread of drug-resistance in the pathogen population. Several studies have focused on the effect of mixing different treatments, or of alternating them in time. Here, we analyze another strategy, where the use of the drug varies spatially: there are places where no one receives any treatment. We find that such a spatial heterogeneity can totally prevent the rise of drug-resistance, provided that the size of treated patches is below a critical threshold. The range of parasite dispersal, the relative costs and benefits of being drug-resistant compared to being drug-sensitive, and the duration of an infection with drug-resistant parasites are the main factors determining the value of this threshold. Our analysis thus provides some general guidance regarding the optimal spatial use of drugs to prevent or limit the evolution of drug-resistance

    Minimization of Biosynthetic Costs in Adaptive Gene Expression Responses of Yeast to Environmental Changes

    Get PDF
    Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses

    On the Evolutionary Modification of Self-Incompatibility: Implications of Partial Clonality for Allelic Diversity and Genealogical Structure

    Get PDF
    Experimental investigations of homomorphic self-incompatibility (SI) have revealed an unanticipated level of complexity in its expression, permitting fine regulation over the course of a lifetime or a range of environmental conditions. Many flowering plants express some level of clonal reproduction, and phylogenetic analyses suggest that clonality evolves in a correlated fashion with SI in Solanum (Solanaceae). Here, we use a diffusion approximation to explore the effects on the evolutionary dynamics of SI of vegetative propagation with SI restricted to reproduction through seed. While clonality reduces the strength of frequency-dependent selection maintaining S-allele diversity, much of the great depth typical of S-allele genealogies is preserved. Our results suggest that clonality can play an important role in the evolution of SI systems, and may afford insight into unexplained features of allele genealogies in the Solanaceae
    corecore