581 research outputs found
Microfocus computed tomography for fetal postmortem imaging: an overview
Over the last few years, fetal postmortem microfocus computed tomography (micro-CT) imaging has increased in popularity for both diagnostic and research purposes. Micro-CT imaging could be a substitute for autopsy, particularly in very early gestation fetuses for whom autopsy can be technically challenging and is often unaccepted by parents. This article provides an overview of the latest research in fetal postmortem micro-CT imaging with a focus on diagnostic accuracy, endovascular staining approaches, placental studies and the reversibility of staining. It also discusses new methods that could prove helpful for micro-CT of larger fetuses. While more research is needed, contrast-enhanced micro-CT has the potential to become a suitable alternative to fetal autopsy. Further research using this novel imaging tool could yield wider applications, such as its practise in imaging rare museum specimens
Diversity of Pol IV Function Is Defined by Mutations at the Maize rmr7 Locus
Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses
Visual ecology of aphids – a critical review on the role of colours in host finding
We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms.
Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region.
We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours
that are not likely to hold. Finally we also discuss the
implications for developing and optimising strategies
of aphid control and monitoring
Cortical thickness, surface area and volume measures in Parkinson's disease, multiple system atrophy and progressive supranuclear palsy
OBJECTIVE
Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are neurodegenerative diseases that can be difficult to distinguish clinically. The objective of the current study was to use surface-based analysis techniques to assess cortical thickness, surface area and grey matter volume to identify unique morphological patterns of cortical atrophy in PD, MSA and PSP and to relate these patterns of change to disease duration and clinical features.
METHODS
High resolution 3D T1-weighted MRI volumes were acquired from 14 PD patients, 18 MSA, 14 PSP and 19 healthy control participants. Cortical thickness, surface area and volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.1.0). Measures of disease severity and duration were assessed for correlation with cortical morphometric changes in each clinical group.
RESULTS
Results show that in PSP, widespread cortical thinning and volume loss occurs within the frontal lobe, particularly the superior frontal gyrus. In addition, PSP patients also displayed increased surface area in the pericalcarine. In comparison, PD and MSA did not display significant changes in cortical morphology.
CONCLUSION
These results demonstrate that patients with clinically established PSP exhibit distinct patterns of cortical atrophy, particularly affecting the frontal lobe. These results could be used in the future to develop a useful clinical application of MRI to distinguish PSP patients from PD and MSA patients
Mapping genetic determinants of host susceptibility to Pseudomonas aeruginosa lung infection in mice.
Background: P. aeruginosa is one of the top three causes of opportunistic human bacterial infections. The remarkable
variability in the clinical outcomes of this infection is thought to be associated with genetic predisposition. However,
the genes underlying host susceptibility to P. aeruginosa infection are still largely unknown.
Results: As a step towards mapping these genes, we applied a genome wide linkage analysis approach to a mouse
model. A large F2 intercross population, obtained by mating P. aeruginosa-resistant C3H/HeOuJ, and susceptible A/J
mice, was used for quantitative trait locus (QTL) mapping. The F2 progenies were challenged with a P. aeruginosa
clinical strain and monitored for the survival time up to 7 days post-infection, as a disease phenotype associated trait.
Selected phenotypic extremes of the F2 distribution were genotyped with high-density single nucleotide polymorphic
(SNP) markers, and subsequently QTL analysis was performed. A significant locus was mapped on chromosome 6 and
was named P. aeruginosa infection resistance locus 1 (Pairl1). The most promising candidate genes, including Dok1,
Tacr1, Cd207, Clec4f, Gp9, Gata2, Foxp1, are related to pathogen sensing, neutrophils and macrophages recruitment and
inflammatory processes.
Conclusions: We propose a set of genes involved in the pathogenesis of P. aeruginosa infection that may be explored
to complement human studie
The host metabolite D-serine contributes to bacterial niche specificity through gene selection
Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity
Practices of traditional beef farmers in their production and marketing of cattle in Zambia
Understanding the practices of traditional cattle farmers in developing countries is an important factor in the development of appropriate, pro-poor disease control policies, and in formulating regional-specific production incentives that can improve productivity. This paper describes the production, husbandry practices, economics, and constraints of traditional cattle farming in Zambia. A cross-sectional study design was used to obtain data from traditional cattle farmers (n = 699) using a structured questionnaire. Data analyses were carried out using SPSS and STATA statistical packages. The results revealed that the majority [65% (95% CI: 59.3–71.1)] of farmers practised a transhumant cattle herding system under communal grazing. In these transhumant herding systems, animal husbandry and management systems were found to be of poor quality, in terms of supplementary feeding, vaccination coverage, deworming, uptake of veterinary services, usage of artificial insemination, and dip tanks all being low or absent. East Coast Fever was the most common disease, affecting 60% (95% CI: 56.4–63.7) of farmers. Cattle sales were low, as farmers only sold a median of two cattle per household per year. Crop farming was found to be the main source of farm income (47%) in agro-pastoralist communities, followed by cattle farming (28%) and other sources (25%). The median cost of production in the surveyed provinces was reported at US885 per herd per year. This translates to an estimated gross margin of US$569, representing 64.3% of revenue.
There is considerable diversity in disease distribution, animal husbandry practices, economics, and challenges in traditional cattle production in different locations of Zambia. Therefore, to improve the productivity of the traditional cattle sub-sector, policy makers and stakeholders in the beef value chain must develop fit-for-purpose policies and interventions that consider these variations
Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive escherichia coli (AIEC) in immune cells
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn's disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients
Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine
Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
- …