7,518 research outputs found
Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling.
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings
Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations
This is the author accepted manuscript. The final version is available from OUP via the DOI in this record.Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.This work was funded by European Research Council and NERC (UK)
A model for reactive porous transport during re-wetting of hardened concrete
A mathematical model is developed that captures the transport of liquid water
in hardened concrete, as well as the chemical reactions that occur between the
imbibed water and the residual calcium silicate compounds residing in the
porous concrete matrix. The main hypothesis in this model is that the reaction
product -- calcium silicate hydrate gel -- clogs the pores within the concrete
thereby hindering water transport. Numerical simulations are employed to
determine the sensitivity of the model solution to changes in various physical
parameters, and compare to experimental results available in the literature.Comment: 30 page
A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments
The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS
Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents
We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag
Chandrasekhar-Kendall functions in astrophysical dynamos
Some of the contributions of Chandrasekhar to the field of
magnetohydrodynamics are highlighted. Particular emphasis is placed on the
Chandrasekhar-Kendall functions that allow a decomposition of a vector field
into right- and left-handed contributions. Magnetic energy spectra of both
contributions are shown for a new set of helically forced simulations at
resolutions higher than what has been available so far. For a forcing function
with positive helicity, these simulations show a forward cascade of the
right-handed contributions to the magnetic field and nonlocal inverse transfer
for the left-handed contributions. The speed of inverse transfer is shown to
decrease with increasing value of the magnetic Reynolds number.Comment: 10 pages, 5 figures, proceedings of the Chandrasekhar Centenary
  Conference, to be published in PRAMANA - Journal of Physic
Growth dynamics and the evolution of cooperation in microbial populations
Microbes providing public goods are widespread in nature despite running the
risk of being exploited by free-riders. However, the precise ecological factors
supporting cooperation are still puzzling. Following recent experiments, we
consider the role of population growth and the repetitive fragmentation of
populations into new colonies mimicking simple microbial life-cycles.
Individual-based modeling reveals that demographic fluctuations, which lead to
a large variance in the composition of colonies, promote cooperation. Biased by
population dynamics these fluctuations result in two qualitatively distinct
regimes of robust cooperation under repetitive fragmentation into groups.
First, if the level of cooperation exceeds a threshold, cooperators will take
over the whole population. Second, cooperators can also emerge from a single
mutant leading to a robust coexistence between cooperators and free-riders. We
find frequency and size of population bottlenecks, and growth dynamics to be
the major ecological factors determining the regimes and thereby the
evolutionary pathway towards cooperation.Comment: 26 pages, 6 figure
A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines
Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications
Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system
© 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system
Understanding pregnancy planning in a low-income country setting: validation of the London measure of unplanned pregnancy in Malawi
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: The London Measure of Unplanned Pregnancy (LMUP) is a new and psychometrically valid measure of pregnancy intention that was developed in the United Kingdom. An improved understanding of pregnancy intention in low-income countries, where unintended pregnancies are common and maternal and neonatal deaths are high, is necessary to inform policies to address the unmet need for family planning. To this end this research aimed to validate the LMUP for use in the Chichewa language in Malawi.Methods: Three Chichewa speakers translated the LMUP and one translation was agreed which was back-translated and pre-tested on five pregnant women using cognitive interviews. The measure was field tested with pregnant women who were recruited at antenatal clinics and data were analysed using classical test theory and hypothesis testing.Results: 125 women aged 15-43 (median 23), with parities of 1-8 (median 2) completed the Chichewa LMUP. There were no missing data. The full range of LMUP scores was captured. In terms of reliability, the scale was internally consistent (Cronbach's alpha = 0.78) and test-retest data from 70 women showed good stability (weighted Kappa 0.80). In terms of validity, hypothesis testing confirmed that unmarried women (p = 0.003), women who had four or more children alive (p = 0.0051) and women who were below 20 or over 29 (p = 0.0115) were all more likely to have unintended pregnancies. Principal component analysis showed that five of the six items loaded onto one factor, with a further item borderline. A sensitivity analysis to assess the effect of the removal of the weakest item of the scale showed slightly improved performance but as the LMUP was not significantly adversely affected by its inclusion we recommend retaining the six-item score.Conclusion: The Chichewa LMUP is a valid and reliable measure of pregnancy intention in Malawi and can now be used in research and/or surveillance. This is the first validation of this tool in a low-income country, helping to demonstrate that the concept of pregnancy planning is applicable in such a setting. Use of the Chichewa LMUP can enhance our understanding of pregnancy intention in Malawi, giving insight into the family planning services that are required to better meet women's needs and save lives. © 2013 Hall et al.; licensee BioMed Central Ltd.Dr Hall’s Wellcome Trust Research Training Fellowship, grant number 097268/Z/11/Z
- …
