896 research outputs found

    First Steps towards Underdominant Genetic Transformation of Insect Populations

    Get PDF
    The idea of introducing genetic modifications into wild populations of insects to stop them from spreading diseases is more than 40 years old. Synthetic disease refractory genes have been successfully generated for mosquito vectors of dengue fever and human malaria. Equally important is the development of population transformation systems to drive and maintain disease refractory genes at high frequency in populations. We demonstrate an underdominant population transformation system in Drosophila melanogaster that has the property of being both spatially self-limiting and reversible to the original genetic state. Both population transformation and its reversal can be largely achieved within as few as 5 generations. The described genetic construct {Ud} is composed of two genes; (1) a UAS-RpL14.dsRNA targeting RNAi to a haploinsufficient gene RpL14 and (2) an RNAi insensitive RpL14 rescue. In this proof-of-principle system the UAS-RpL14.dsRNA knock-down gene is placed under the control of an Actin5c-GAL4 driver located on a different chromosome to the {Ud} insert. This configuration would not be effective in wild populations without incorporating the Actin5c-GAL4 driver as part of the {Ud} construct (or replacing the UAS promoter with an appropriate direct promoter). It is however anticipated that the approach that underlies this underdominant system could potentially be applied to a number of species. Figure

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    The sense and nonsense of direct-to-consumer genetic testing for cardiovascular disease

    Get PDF
    Expectations are high that increasing knowledge of the genetic basis of cardiovascular disease will eventually lead to personalised medicine—to preventive and therapeutic interventions that are targeted to at-risk individuals on the basis of their genetic profiles. Most cardiovascular diseases are caused by a complex interplay of many genetic variants interacting with many non-genetic risk factors such as diet, exercise, smoking and alcohol consumption. Since several years, genetic susceptibility testing for cardiovascular diseases is being offered via the internet directly to consumers. We discuss five reasons why these tests are not useful, namely: (1) the predictive ability is still limited; (2) the risk models used by the companies are based on assumptions that have not been verified; (3) the predicted risks keep changing when new variants are discovered and added to the test; (4) the tests do not consider non-genetic factors in the prediction of cardiovascular disease risk; and (5) the test results will not change recommendations of preventive interventions. Predictive genetic testing for multifactorial forms of cardiovascular disease clearly lacks benefits for the public. Prevention of disease should therefore remain focused on family history and on non-genetic risk factors as diet and physical activity that can have the strongest impact on disease risk, regardless of genetic susceptibility

    Development of the Bi-Partite Gal4-UAS System in the African Malaria Mosquito, Anopheles gambiae

    Get PDF
    Functional genetic analysis in Anopheles gambiae would be greatly improved by the development of a binary expression system, which would allow the more rapid and flexible characterisation of genes influencing disease transmission, including those involved in insecticide resistance, parasite interaction, host and mate seeking behaviour. The Gal4-UAS system, widely used in Drosophila melanogaster functional genetics, has been significantly modified to achieve robust application in several different species. Towards this end, previous work generated a series of modified Gal4 constructs that were up to 20 fold more active than the native gene in An. gambiae cells. To examine the Gal4-UAS system in vivo, transgenic An. gambiae driver lines carrying a modified Gal4 gene under the control of the carboxypeptidase promoter, and responder lines carrying UAS regulated luciferase and eYFP reporter genes have been created. Crossing of the Gal4 and UAS lines resulted in progeny that expressed both reporters in the expected midgut specific pattern. Although there was minor variation in reporter gene activity between the different crosses examined, the tissue specific expression pattern was consistent regardless of the genomic location of the transgene cassettes. The results show that the modified Gal4-UAS system can be used to successfully activate expression of transgenes in a robust and tissue specific manner in Anopheles gambiae. The midgut driver and dual reporter responder constructs are the first to be developed and tested successfully in transgenic An. gambiae and provide the basis for further advancement of the system in this and other insect species

    UDP-Galactose 4′-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster

    Get PDF
    In both humans and Drosophila melanogaster, UDP-galactose 4′-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans

    Cetuximab plus platinum-based chemotherapy in head and neck Squamous Cell Carcinoma: a retrospective study in a single Comprehensive European Cancer Institution

    Get PDF
    Background: The use of cetuximab in combination with platinum (P) plus 5-fluorouracil (F) has previously been demonstrated to be effective in the treatment of metastatic squamous cell cancer of head and neck (SCCHN). We investigated the efficacy and outcome of this protocol as a first-line treatment for patients with recurrent or metastatic disease. We evaluated overall-survival (OS), progression-free-survival (PFS), overall response rate (ORR) and the treatment toxicity profile in a retrospective cohort. Patients and Methods: This study enrolled 121 patients with untreated recurrent or metastatic SCCHN. The patients received PF+ cetuximab every 3 weeks for a maximum of 6 cycles. Patients with stable disease who received PF+ cetuximab continued to receive cetuximab until disease progressed or unacceptable toxic effects were experienced, whichever occurred first. Results: The median patient age was 53 (37-78) years. The patient cohort was 86.8% male. The addition of cetuximab to PF in the recurrent or metastatic setting provided an OS of 11 months (Confidential Interval, CI, 95%, 8.684-13.316) and PFS of 8 months (CI 95%, 6.051-9.949). The disease control rate was 48.9%, and the ORR was 23.91%. The most common grade 3 or 4 adverse events in the PF+ cetuximab regimen were febrile neutropenia (5.7%), skin rash (3.8%) and mucosistis (3.8%). Conclusions: The results of this study suggest that cetuximab plus platinum-fluorouracil chemotherapy is a good option for systemic treatment in advanced SSCHN patients. This regimen has a well-tolerated toxicity profile.info:eu-repo/semantics/publishedVersio

    Fixation strength of biocomposite wedge interference screw in ACL reconstruction: effect of screw length and tunnel/screw ratio. A controlled laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of the graft is essential in anterior cruciate ligament surgery. An optimal method of fixation should be easy to insert and provide great resistance against pull-out forces.</p> <p>A controlled laboratory study was designed to test the primary stability of ACL tendinous grafts in the tibial tunnel. The correlation between resistance to traction forces and the cross-section and length of the screw was studied.</p> <p>Methods</p> <p>The tibial phase of ACL reconstruction was performed in forty porcine tibias using digital flexor tendons of the same animal. An 8 mm tunnel was drilled in each specimen and two looped tendons placed as graft. Specimens were divided in five groups according to the diameter and length of the screw used for fixation. Wedge interference screws were used. Longitudinal traction was applied to the graft with a Servohydraulic Fatigue System. Load and displacement were controlled and analyzed.</p> <p>Results</p> <p>The mean loads to failure for each group were 295,44 N (Group 1; 9 × 23 screw), 564,05 N (Group 2; 9 × 28), 614,95 N (Group 3; 9 × 35), 651,14 N (Group 4; 10 × 28) and 664,99 (Group 5; 10 × 35). No slippage of the graft was observed in groups 3, 4 and 5. There were significant differences in the load to failure among groups (ANOVA/P < 0.001).</p> <p>Conclusions</p> <p>Longer and wider interference screws provide better fixation in tibial ACL graft fixation. Short screws (23 mm) do not achieve optimal fixation and should be implanted only with special requirements.</p

    Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    Get PDF
    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusion
    • …
    corecore