150,246 research outputs found

    On eigenfunction expansions associated with wave propagation along ducts with wave-bearing boundaries

    Get PDF
    A class of boundary value problems, that has application in the propagation of waves along ducts in which the boundaries are wave-bearing, is considered. This class of problems is characterised by the presence of high order derivatives of the dependent variable(s) in the duct boundary conditions. It is demonstrated that the underlying eigenfunctions are linearly dependent and, most significantly, that an eigenfunction expansion representation of a suitably smooth function, say f(y)f(y), converges point-wise to that function. Two physical examples are presented. It is demonstrated that, in both cases, the eigenfunction representation of the solution is rendered unique via the application of suitable edge conditions. Within the context of these two examples, a detailed discussion of the issue of completeness is presented

    Orthogonality relations for fluid-structural waves in a 3-D rectangular duct with flexible walls

    Get PDF
    An exact expression for the fluid-coupled structural waves that propagate in a three-dimensional, rectangular waveguide with elastic walls is presented in terms of the non-separable eigenfunctions ψn(y,z). It is proved that these eigenfunctions are linearly dependent and that an eigenfunction expansion representation of a suitably smooth function f(y,z) converges point-wise to that function. Orthogonality results for the derivatives ψny(a,z) are derived which, together with a partial orthogonality relation for ψn(y,z), enable the solution of a wide range of acoustic scattering problems. Two prototype problems, of the type typically encountered in two-part scattering problems, are solved, and numerical results showing the displacement of the elastic walls are presented.Brunel Open Access Publishing Fun

    Conducting rigorous research with subgroups of at-risk youth: lessons learned from a teen pregnancy prevention project in Alaska

    Get PDF
    In 2010, Alaska Department of Health and Social Services (DHSS) received federal funding to test an evidence-based teen pregnancy prevention program. The grant required a major modification to an existing program and a randomized control trial (RCT) to test its effectiveness. As the major modifications, Alaska used peer educators instead of adults to deliver the program to youth aged 1419 instead of the original curriculum intended age range of 1214. Cultural and approach adaptations were included as well. After 4 years of implementation and data collection, the sample was too small to provide statistically significant results. The lack of findings gave no information about the modification, nor any explanation of how the curriculum was received, or reasons for the small sample. This paper reports on a case study follow-up to the RCT to better understand outcome and implementation results. For this study, researchers reviewed project documents and interviewed peer educators, state and local staff, and evaluators. Three themes emerged from the data: (a) the professional growth of peer educators and development of peer education, (b) difficulties resulting from curriculum content, especially for subpopulations of sexually active youth, youth identified as lesbian, gay, bisexual, transgender, queer, intersex and/or asexual, pregnant, and parenting youth and (c) the appropriateness of an RCT with subpopulations of at-risk youth. Three recommendations emerged from the case study. First, including as many stakeholders as possible in the program and evaluation design phases is essential, and must be supported by appropriate funding streams and training. Second, there must be recognition of the multiple small subpopulations found in Alaska when adapting programs designed for a larger and more homogeneous population. Third, RCTs may not be appropriate for all population subgroups.Ye

    On the factorization of a class of Wiener-Hopf kernels

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in IMA Journal of Applied Mathematics following peer review. The definitive publisher-authenticated version: Abrahams, I.D. & Lawrie, J.B. (1995) “On the factorisation of a class of Wiener-Hopf kernels.” I.M.A. J. Appl. Math., 55, 35-47. is available online at: http://imamat.oxfordjournals.org/cgi/content/abstract/55/1/35.The Wiener-Hopf technique is a powerful aid for solving a wide range of problems in mathematical physics. The key step in its application is the factorization of the Wiener-Hopf kernel into the product of two functions which have different regions of analyticity. The traditional approach to obtaining these factors gives formulae which are not particularly easy to compute. In this article a novel approach is used to derive an elegant form for the product factors of a specific class of Wiener-Hopf kernels. The method utilizes the known solution to a difference equation and the main advantage of this approach is that, without recourse to the Cauchy integral, the product factors are expressed in terms of simple, finite range integrals which are easy to compute

    An orthogonality condition for a class of problems with high order boundary conditions: Applications in sound/structure interaction

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in The Quarterly Journal of Mechanics and Applied Mathematics following peer review. The definitive publisher-authenticated version: Lawrie, J.B. & Abrahams, I.D. (1999) “An orthogonality condition for a class of problems with high order boundary conditions; applications in sound/structure interaction.” Q. Jl. Mech. Appl. Math., 52(2), 161-181. is available online at: http://qjmam.oxfordjournals.org/cgi/content/abstract/52/2/161There are numerous interesting physical problems, in the fields of elasticity, acoustics and electromagnetism etc., involving the propagation of waves in ducts or pipes. Often the problems consist of pipes or ducts with abrupt changes of material properties or geometry. For example, in car silencer design, where there is a sudden change in cross-sectional area, or when the bounding wall is lagged. As the wavenumber spectrum in such problems is usually discrete, the wave-field is representable by a superposition of travelling or evanescent wave modes in each region of constant duct properties. The solution to the reflection or transmission of waves in ducts is therefore most frequently obtained by mode-matching across the interface at the discontinuities in duct properties. This is easy to do if the eigenfunctions in each region form a complete orthogonal set of basis functions; therefore, orthogonality relations allow the eigenfunction coefficients to be determined by solving a simple system of linear algebraic equations. The objective of this paper is to examine a class of problems in which the boundary conditions at the duct walls are not of Dirichlet, Neumann or of impedance type, but involve second or higher derivatives of the dependent variable. Such wall conditions are found in models of fluid/structural interaction, for example membrane or plate boundaries, and in electromagnetic wave propagation. In these models the eigenfunctions are not orthogonal, and also extra edge conditions, imposed at the points of discontinuity, must be included when mode matching. This article presents a new orthogonality relation, involving eigenfunctions and their derivatives, for the general class of problems involving a scalar wave equation and high-order boundary conditions. It also discusses the procedure for incorporating the necessary edge conditions. Via two specific examples from structural acoustics, both of which have exact solutions obtainable by other techniques, it is shown that the orthogonality relation allows mode matching to follow through in the same manner as for simpler boundary conditions. That is, it yields coupled algebraic systems for the eigenfunction expansions which are easily solvable, and by which means more complicated cases, such as that illustrated in figure 1, are tractable
    corecore