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Abstract

There are numerous interesting physical problems, in the fields of elasticity, acoustics
and electromagnetism etc., involving the propagation of waves in ducts or pipes. Often the
problems consist of pipes or ducts with abrupt changes of material properties or geometry.
For example, in car silencer design, where there is a sudden change in cross-sectional area,
or when the bounding wall is lagged. As the wavenumber spectrum in such problems is
usually discrete, the wave-field is representable by a superposition of travelling or evanescent
wave modes in each region of constant duct properties. The solution to the reflection or
transmission of waves in ducts is therefore most frequently obtained by mode-matching
across the interface at the discontinuities in duct properties. This is easy to do if the
eigenfunctions in each region form a complete orthogonal set of basis functions; therefore,
orthogonality relations allow the eigenfunction coefficients to be determined by solving a
simple system of linear algebraic equations.

The objective of this paper is to examine a class of problems in which the boundary con-
ditions at the duct walls are not of Dirichlet, Neumann or of impedance type, but involve
second or higher derivatives of the dependent variable. Such wall conditions are found in
models of fluid/structural interaction, for example membrane or plate boundaries, and in
electromagnetic wave propagation. In these models the eigenfunctions are not orthogonal,
and also extra edge conditions, imposed at the points of discontinuity, must be included
when mode matching. This article presents a new orthogonality relation, involving eigen-
functions and their derivatives, for the general class of problems involving a scalar wave
equation and high-order boundary conditions. It also discusses the procedure for incorpo-
rating the necessary edge conditions. Via two specific examples from structural acoustics,
both of which have exact solutions obtainable by other techniques, it is shown that the
orthogonality relation allows mode matching to follow through in the same manner as for
simpler boundary conditions. That is, it yields coupled algebraic systems for the eigenfunc-
tion expansions which are easily solvable, and by which means more complicated cases, such
as that illustrated in figure 1, are tractable.
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1 Introduction

There is a vast number of physical situations that can be modelled in terms of the propagation
and scattering of acoustic waves in a waveguide with high-order boundary conditions. The
waveguide may have discontinuities in the material properties of its boundaries (two or multi-
part boundary conditions) but be continuous in geometry, in which case the problem may
be solved by recourse to the classical Wiener-Hopf technique. If, however, the waveguide is
discontinuous in geometry (i.e. abrupt changes in width) then alternative solution methods
must be sought (see figure 1). Mode-matching of the eigenfunction expansions of the velocity
potential at the interface of each discontinuity provides an attractive way forward. Not only are
eigenfunction expansions conceptually simple but they often lead to numerically efficient (albeit
infinite) systems of equations to solve as opposed to the rather more daunting Fourier integral
representations that are obtained via application of the Wiener-Hopf technique or Green’s
function methods. However, unless the eigenfunctions form an orthogonal basis set, or at least
the algebraic system has a matrix which is diagonally dominant, the eigenfunction approach is
rendered ineffectual. In other words, if for a general solution there are many eigenfunctions of
similar weight required so that their contributions do not reduce much in significance as the
mode number increases, then not only will it be difficult to invert such systems but their use
as an approximating expansion will be curtailed. In such cases the only viable way forward
is to establish an orthogonality relation by which the Fourier coefficients of the eigenfunction
expansion can be isolated and expressed in terms of known boundary data.

The complexity of an orthogonality relation depends both on the type of boundary that
forms the surface of the waveguide and the order of the field equation. For problems in which
the waveguide walls comprise of soft, hard or impedance (Robin’s condition) surfaces and the
field equation is no higher than second order, the solution can be found, using separation of
variables techniques, in terms of an eigenfunction expansion. The resulting eigen-sub-system will
be of Sturm-Liouville type and, thus, the eigenfunctions satisfy well-known, simple orthogonality
relations. Hence, for problems of mode-matching across the interface between two semi-infinite
(or finite) regions, the orthogonality relation permits the problem to be reduced to that of
solving a well-behaved infinite system of linear algebraic equations. This approach has been
utilized by many authors, in an enormous variety of subject disciplines, enabling them to solve
a wide range of problems involving complicated discontinuous geometric structures. In the
fields of water waves, acoustics and electromagnetic theory etc., orthonormal basis functions
have been, and continue to be extremely useful, as can be seen in, for example, Lebedev et al.
(1979), Evans & Linton (1991), Peat (1991), Evans & Porter (1995), and Dalrymple & Martin
(1996).

In contrast, for higher-order field equations, separation of variables will lead to eigenfunc-
tion expansions for which the eigen-sub-system is usually not Sturm-Liouville – even for simple
boundary conditions. For example, in the field of elasticity, Folk & Herczynski (1986) and Her-
czynski & Folk (1989) consider a system in which separation of variables reduces the governing
equations to a pair of coupled or uncoupled second-order ordinary differential equations which
are solved subject to impedance type boundary conditions. The resulting eigensystem is not
Sturm-Liouville but nevertheless they are able to derive an orthogonality relation via which
the problem in question can be solved. This orthogonality relation is, in fact, equivalent to
one formerly derived by Fama (1972) in the context of the elastostatic response of a circular
cylinder. Other examples of non Sturm-Liouville systems which possess orthogonality relations
can be found in the contexts of fluid flows (Orr-Sommerfeld equation) in Drazin & Reid (1981);
viscoelastic motions in Shen & Mote (1992); fluid-loaded elastic structures in Murphy et al.
(1994) and Zheng-Dong & Hagiwara (1991); electromagnetism in Seligson (1988); and porous
media in Scandrett & Frenzen (1995). As a further example of a system governed by a fourth-
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FIG. 1. The general class of boundary value problems for which an orthogonality relation is derived.
The governing equation is the scalar wave equation and the boundary conditions can have high-order
derivatives.

order ordinary differential equation, Rao & Rao (1988) obtained an orthogonality relation for
the in vacuo eigenmodes of a thin elastic plate. High-order field equations, as in the examples
cited above, usually lead to orthogonality relations that are not simple. These often consist of
finite integrals of a linear combination of eigenfunctions and their derivatives.

Even when applied in conjunction with a separable second-order field equation, high-order
boundary conditions, such as those that describe the fluid-coupled motion of a membrane or
elastic plate (Junger & Feit, 1986), give rise to non-Sturm-Liouville eigen-sub-systems. The
eigenvalues are now defined as the roots of a complicated dispersion relation and, as a conse-
quence, the eigenfunctions are not usually orthogonal even with respect to a weight function.
With the wealth of literature available on the subject of mode-matching, it seems remarkable
that boundary value problems involving waveguides with high-order boundary conditions have
not been extensively studied with a view to establishing the relevant orthogonality relations.
Wu et al. (1995) examine the wave-induced response of an elastic floating plate using modal
expansions of the structural motion, but their approach by-passes the issue to some extent by
considering the forced response of the plate rather than the fluid-coupled motion. There may be
a number of reasons for the limited literature in this area. Firstly, as in the case of high-order
field equations, the orthogonality relations are likely to be non-simple in form. Secondly, for
problems involving high-order boundary conditions on semi-infinite or finite domains, there is
inevitably the question of how to impose the edge conditions at the junction of discontinuity.
Thus, derivation of an appropriate orthogonality relation is not, in itself, sufficient to enable this
class of boundary value problems to be solved. A practical and convenient means of imposing
the edge conditions is also required. The aim of this paper is to address both these points: a
general orthogonality relation for a class of boundary value problems with high-order bound-
ary conditions is derived and simple procedures are demonstrated by which appropriate edge
conditions can be incorporated. The general results derived in this article have already been
successfully applied to solve a problem involving the scattering of sound waves in a waveguide
with discontinuities in both geometry and material property (Warren & Lawrie, 1996), that
is, the two-dimensional duct changes both its height and boundary conditions at some point
(for example the origin shown in figure 1). It is anticipated that the eigenfunction expansion
method proposed herein will enable many more complicated problems of this class to be solved.

In section 2 the class of boundary value problems is described and a detailed derivation of
the general orthogonality relation is given. Following, in sections 3 and 4, the application of
the orthogonality relation is demonstrated by two specific examples. These illustrate the two
approaches by which appropriate physical edge conditions can be enforced. Finally, section 5
briefly summarizes the results and techniques presented in this article.
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2 The orthogonality relation

In this section an orthogonality relation for a general class of boundary value problems is derived.
This group of problems is one that occurs in a number of fields of applied mathematics, for
example, water-waves, elasticity, acoustics and electromagnetic theory. Common to all these
areas are problems which involve the propagation of waves along waveguides in which one or
both of the boundaries is described by the Robin’s or a higher-order condition. It is with the
high-order boundary conditions that this section, and indeed this article, is concerned.

2.1 The generalized boundary value problem

For ease of exposition, the general boundary value problem is posed in terms of Helmholtz’ (or
the reduced wave) equation, that is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
φ(x, y) = 0 (2.1)

in which x and y are the usual Cartesian coordinates but are non-dimensionalized with respect
to k−1 where k is the fluid wavenumber. The advantage of a non-dimensionalized analysis is
to omit as much mathematical clutter as possible and to present the minimum number of free
(non-dimensional) parameters in the equations. It is a simple matter to return to the physical
variables and confirm they have the correct dimensional form. More complicated governing
equations to that in (2.1) can easily be tackled, for example Herczynski & Folk (1989) consider a
system in which the governing equations comprise two coupled second-order ordinary differential
equations but with Robin’s boundary conditions. In this article the field equation holds in a
strip of finite height 0 ≤ y ≤ a and infinite length −∞ < x < ∞ which is bounded by walls with
high-order boundary conditions. The mathematical statement of the most general, physically
relevant, pair of boundary conditions consists of

La

(
∂

∂x

)
∂φ

∂y
+Ma

(
∂

∂x

)
φ = 0, y = a, −∞ < x < ∞, (2.2)

on the upper waveguide surface together with

L0

(
∂

∂x

)
∂φ

∂y
+M0

(
∂

∂x

)
φ = 0, y = 0, −∞ < x < ∞, (2.3)

on the lower surface. Here Lp( ∂
∂x) and Mp( ∂

∂x), p = a,0, are differential operators of the form

Lp

(
∂

∂x

)
=

Kp∑

k=0

cp
k

∂2k

∂x2k
, Mp

(
∂

∂x

)
=

Jp∑

j=0

dp
j

∂2j

∂x2j
, (2.4)

where c0
k, ca

k, d0
j , da

j are constant coefficients. Note that, for physical reasons, only even deriva-
tives in x are included. Higher derivatives in y are easily removed by recourse to equation (2.1),
hence the absence of such terms in (2.2) and (2.3).

The general solution of the boundary value problem described by (2.1)–(2.4) can be ex-
pressed as a separable eigenfunction expansion of the form

φ(x, y) =
∞∑

n=0

σnYn(y)e±iνnx. (2.5)

Here σn are arbitrary constants, Yn(y) satisfies the eigensystem

Y ′′
n (y) = γ2

nYn(y), γn = (ν2
n − 1)1/2 (2.6)
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where the primes denote differentiation with respect to y and the eigenvalues νn, n = 0, 1, 2, . . .
are defined as the roots of the coupled equations

Pa(νn)Y ′
n(a) + Qa(νn)Yn(a) = 0, (2.7)

P0(νn)Y ′
n(0) + Q0(νn)Yn(0) = 0. (2.8)

The functions Pp(νn) and Qp(νn), p = a, 0, are characteristic polynomials and correspond to the
action of the operators Lp( ∂

∂x) and Mp( ∂
∂x) on the eigen-expansion (2.5), i.e. Pp(νn) ≡ Lp(iνn),

Qp(νn) ≡Mp(iνn).
It is a simple matter to show that (2.6)–(2.8) imply an explicit form for Yn(y):

Yn(y) ∝ P0(νn) cosh(γny)− 1
γ n

Q0(νn) sinh(γny)

∝ Pa(νn) cosh(γn(a− y)) +
1
γ n

Qa(νn) sinh(γn(a− y)) (2.9)

from which we immediately deduce the dispersion relation, or consistency condition for (2.9),
which the eigenvalues νn must satisfy. This is

K(ν) =
[
Q0(ν)Qa(ν)− γ2P0(ν)Pa(ν)

] sinh(γa)
γ

+ [Pa(ν)Q0(ν)−Qa(ν)P0(ν)] cosh(γa) = 0,

(2.10)
where γ2 = ν2− 1. The fact that the operators (2.4) contain only even derivatives in x ensures
that the characteristic polynomials are functions of ν2. Thus, the dispersion relation can be
expressed as a function of even powers of γ, and it is a straightforward matter to prove the
following for the general case when Pp(ν), Qp(ν), p = 0, a, contain real coefficients:
(i) for every root ν there is another root −ν;
(ii) there is a finite number of real roots, the particular number depending on the number of
real zeros of the polynomials in the square brackets in (2.10), located on |ν| > 1;
(iii) there is an infinite number of roots located on the imaginary axis of γ, or equivalently a
finite number on |<(ν)| < 1, =(ν) = 0, and an infinite number on <(ν) = 0;
(iv) there is a finite number of roots, ν, with non-zero real and imaginary parts.
A convention can be employed that the +νn roots have either

<(νn) > 0 or <(νn) = 0,=(νn) > 0. (2.11)

The main focus of this article is an orthogonality relation and thus the actual location of the
roots of K(ν) = 0 is immaterial; all that is required is that Yn(y) : n = 0, 1, 2, . . ., where the
Yn(y) are given in (2.9), be complete. Here it is asserted that the summation in (2.5) is over a
complete set of eigenfunctions in view of the fact that there is no continuous spectrum of eigen-
frequencies, ν, arising from the dispersion relation (2.10), that is, no branch-cut contributions.
One procedure by which this may be proved involves deriving the Green’s function solution for
an infinite duct with boundary conditions (2.2), (2.3) by Fourier transform methods; a solution
for any particular forcing can be obtained by convolving the Green’s function with the forcing
data. Since the Green’s function is meromorphic (with, in general, only simple poles) for this
class of problems, this solution is also free of branch-cuts. Therefore, deformation of the in-
verse Fourier integral contour allows the solution to be expressed as a superposition of discrete
eigenfunctions of the form (2.5) (cf. expansion (3.17) in section 3).

We wish to employ different eigenfunction expansions, of the form (2.5), in each of the
uniform regions of the duct between the discontinuities, such as are shown in figure 1. In
each segment the eigenfunctions and eigenvalues will be known, but the coefficients σn must be
found by mode-matching across the interfaces at the location of the discontinuities. Essential to
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this procedure is the existence of an orthogonality relation for the eigensystem. The following
theorem states the appropriate orthogonality relation for eigensystems of the class described by
(2.6) – (2.8).

2.2 The orthogonality relation

Theorem
The eigenfunctions Yn(y) described by (2.6)–(2.8) have the orthogonality property

∫ a

0
{(γ2

nYnY ′
m + γ2

mYmY ′
n) +

Bmn

Amn
(γ2

nYnYm + Y ′
mY ′

n) (2.12)

− Bnm

Amn
(γ2

mYmYn + Y ′
mY ′

n)} dy =

{
0, m 6= n
Cn, n = m

or equivalently, by (2.6)
∫ a

0
{(Y ′′

n Y ′
m + Y ′′

mY ′
n) +

Bmn

Amn
(Y ′′

n Ym + Y ′
mY ′

n) (2.13)

− Bnm

Amn
(Y ′′

mYn + Y ′
mY ′

n)} dy =

{
0, m 6= n
Cn, n = m

which may be written

−(γ2
m − γ2

n)
Bnm

Amn

∫ a

0
YnYm dy + Y ′

n(a)Y ′
m(a) +

(Bmn −Bnm)
Amn

Y ′
n(a)Ym(a) (2.14)

− Y ′
n(0)Y ′

m(0)− (Bmn −Bnm)
Amn

Y ′
n(0)Ym(0) =

{
0, m 6= n
Cn, n = m

where

Amn = Qa(νm)Q0(νn)Pa(νn)P0(νm)−Qa(νn)Q0(νm)Pa(νm)P0(νn), (2.15)
Bmn = Qa(νm)Q0(νm){Q0(νn)Pa(νn)−Qa(νn)P0(νn)}, (2.16)

and the non-zero constant Cn is defined by

Cn =
[
(Y ′

n)2 + DnY ′
nYn

]a

0
−En

∫ a

0
Y 2

n dy (2.17)

with

Dn =
Q2

0(νn){Q′
a(νn)Pa(νn)−Qa(νn)P ′

a(νn)} −Q2
a(νn){Q′

0(νn)P0(νn)−Q0(νn)P ′
0(νn)}

Q0(νn)Pa(νn){Qa(s)P0(s)}′|s=νn −Qa(νn)P0(νn){Q0(s)Pa(s)}′|s=νn

,

(2.18)

En =
2νnBnn

Q0(νn)Pa(νn){Qa(s)P0(s)}′|s=νn −Qa(νn)P0(νn){Q0(s)Pa(s)}′|s=νn

. (2.19)

Proof
First consider the case in which n 6= m. Expression Amn times (2.12) may be rewritten as

∫ a

0
{Amn

d

dy
(Y ′

nY ′
m) + Bmn

d

dy
(Y ′

nYm)−Bnm
d

dy
(Y ′

mYn)} dy = 0, n 6= m. (2.20)

It clearly follows that
[
AmnY ′

nY ′
m + BmnY ′

nYm −BnmYnY ′
m

]a
0 = 0. (2.21)
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With the choice of Amn and Bmn given in (2.15) – (2.16), it is straightforward but tedious to
show that (2.21) may be re-expressed in the form

[
Qa(νm)Q0(νn){Pa(νn)Y ′

n + Qa(νn)Yn}{P0(νm)Y ′
m + Q0(νm)Ym} (2.22)

− Qa(νn)Q0(νm){Pa(νm)Y ′
m + Qa(νm)Ym}{P0(νn)Y ′

n + Q0(νn)Yn}
]a
0 = 0.

This is obviously true from boundary conditions (2.7) and (2.8).

By recourse to (2.6), the integral expression in (2.12) may be written as
∫ a

0
{ d

dy
(Y ′

nY ′
m) +

Bmn −Bnm

Amn

d

dy
(Y ′

nYm)− (γ2
m − γ2

n)Bnm

Amn
YnYm} dy. (2.23)

Taking the limit m → n this reduces to
∫ a

0
{ d

dy
(Y ′

n)2 + Dn
d

dy
(Y ′

nYn)− EnY 2
n } dy (2.24)

where

Dn = lim
m→n

Bmn −Bnm

Amn
(2.25)

En = lim
m→n

(γ2
m − γ2

n)Bnm

Amn
. (2.26)

Integrating the first two terms in (2.24) proves the form of Cn given in (2.17), and the value of
the coefficients Dn, En are easily shown, by L’Hospital’s rule, to reduce to (2.18) and (2.19). 2

Note that Cn is non-zero as long as νn is a simple zero of the dispersion relation (2.10), and
may be written in the form

Cn =
[

lim
m→n

{
Qa(νm)Q0(νn){Pa(νn)Y ′

n + Qa(νn)Yn}{P0(νm)Y ′
m + Q0(νm)Ym} (2.27)

−Qa(νn)Q0(νm){Pa(νm)Y ′
m + Qa(νm)Ym}{P0(νn)Y ′

n + Q0(νn)Yn}
}

/Amn
]a
0 .

Further, Amn is assumed to be non-zero in the above, and in fact it vanishes only for trivial
cases, such as Robin’s boundary conditions on both duct walls. In the latter situation standard
Sturm-Liouville theory is appropriate.

As mentioned above, Pp(νn) and Qp(νn), p = a, 0, are polynomials in ν2
n and thus may

always be expressed as polynomials in γ2
n = ν2

n − 1. It follows that the coefficients Amn and
Bmn in (2.12) are themselves polynomials in the two variables γ2

n and γ2
m. However, any power

of γ2
m multiplying Ym or its derivative in (2.12) can, from (2.6), be re-expressed as a higher

derivative of Ym. Therefore, the orthogonality relation (in any of the forms (2.12)–(2.14)) may
be expressed in terms of higher derivatives of Ym, with the associated coefficients independent
of m, which we can write as the inner product of eigenfunctions

(Ym, Yn) = Cnδmn (2.28)

where δmn is the usual Kronecker delta. Hence, this allows for straightforward application of
the orthogonality property, in particular by enabling the definition of an inner-product relation:

(f, Yn) = σnCn, (2.29)

where

f(y) =
∞∑

m=0

σmYm(y) (2.30)
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is a sufficiently differentiable function over the interval 0 ≤ y ≤ a for the inner product to exist.
As a final point, it should be noted that the above orthogonality relation is derived for the

general case in which both boundaries of the waveguide are described by high-order conditions.
This is not always the case; very often one surface comprises an acoustically soft or hard surface.
To obtain the appropriate result for either a soft or hard condition on the lower surface, the
high-order condition is replaced simply with

β
∂φ

∂y
+ αφ = 0. (2.31)

Then
P0(νn) = β, Q0(νn) = α (2.32)

and it follows that

Amn = αβ{Qa(νm)Pa(νn)−Qa(νn)Pa(νm)}, (2.33)
Bmn = αQa(νm){αPa(νn)− βQa(νn)}. (2.34)

After cancelling α throughout, the orthogonality relations for a soft (hard) lower surface follow
directly from (2.12) by putting β = 0 (α = 0).

3 Application to a problem involving the scattering of struc-
tural waves by a corner

In this section the first of two illustrative problems is considered. Both involve high-order
boundary conditions over a semi-infinite domain and thus both require the application of edge
conditions to achieve a unique solution. The model problems have been chosen to demonstrate
the applicability of orthogonality relation (2.12) (or equivalently (2.14)). However, they can
also be solved by recourse to other standard techniques which thus provide essential checks for
the eigenfunction expansion technique propounded in section 2. In both this and the following
sections, a detailed discussion regarding the physical models and the alternative solution meth-
ods is omitted because it is beyond the scope of this article. These boundary value problems,
whilst perhaps their particular solutions do not appear in the literature, belong to a very well
studied class and so the reader is directed elsewhere for other specific examples (e.g. Leppington
(1976), Abrahams (1982), Papanikolaou (1997)).

The problem is to determine the reflection of, and the scattered sound field generated by, a
fluid-coupled membrane wave of radian frequency ω incident in the negative x-direction along
a semi-infinite membrane (see figure 2). The equation of motion of the membrane, for two-
dimensional disturbances, is

−T
∂2η

∂x2
+ ρm

∂2η

∂t2
= p (3.1)

where η is the membrane deflection, p is the fluid pressure inside the duct, T is the membrane
tension per unit span, and ρm is the membrane mass per unit area. This flexible structure
forms the upper boundary of a two-dimensional semi-infinite duct. The lower surface of the
duct and the vertical end face comprise acoustically hard surfaces, the interior region contains
a compressible fluid of sound speed c and density ρ whilst the region exterior to the duct is in
vacuo. In terms of non-dimensional Cartesian coordinates (scaled on the acoustic wavelength)
the duct occupies the region 0 ≤ y ≤ a, x > 0; see figure 2. Further, time is non-dimensionalized
by scaling on the inverse of ω. It is convenient to express the total non-dimensional fluid velocity
potential, φtot(x, y) in terms of an incident and a scattered field, both of which are assumed to
have harmonic time dependence. Thus, we can write

φtot(x, y, t) = <
[
{φinc(x, y) + φ(x, y)}e−it

]
(3.2)
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FIG. 2. A semi-infinite duct containing a compressible fluid. On y = 0, x > 0 and on x = 0, 0 < y < a

the walls are hard; on y = a, x > 0 the duct boundary is a thin membrane with condition (3.8).

where the incident field contains an incident structural wave together with a reflected wave of
equal amplitude, the latter being included purely for algebraic convenience. Hence,

φinc(x, y) = A{e−iν0x + eiν0x} cosh(γ0y), (3.3)

where A is an arbitrary constant amplitude and the positive real quantities γ0 and ν0 will be
defined later in the text. Note that the fluid pressure and membrane displacement written in
(3.1) are related to the velocity potential through

p(x, y, t) = −ρ
∂φtot

∂t
(x, y, t),

∂η

∂t
(x, t) =

∂φtot

∂y
(x, a, t). (3.4)

The boundary value problem may be formulated in terms of the scattered field. This quantity
satisfies Helmholtz’ equation, that is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
φ(x, y) = 0 (3.5)

and on the two rigid duct surfaces the normal component of fluid velocity vanishes:

∂φ

∂y
= 0, y = 0, x ≥ 0 (3.6)

∂φ

∂x
= 0, x = 0, 0 ≤ y ≤ a. (3.7)

The upper duct surface comprises the membrane, for which the non-dimensional form of the
equation of motion (3.1) is most conveniently expressed as

{
∂2

∂x2
+ µ2

}
∂φ

∂y
+ αφ = 0, y = a, x > 0. (3.8)

Here µ and α are the non-dimensional in vacuo wavenumber and fluid loading parameter re-
spectively, which are defined in terms of the physical variables as

µ =
√

ρmc2/T , α = c3ρ/(ωT ). (3.9)

The derivation of (3.8) can be found in Leppington (1978). The edge of the membrane meets
the vertical face of the duct at the point y = a, x = 0 and the membrane displacement is taken
to be zero here. In terms of φ(x, y) the edge condition is

∂φ

∂y
(0, a) = −∂φinc

∂y
(0, a). (3.10)
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It remains only to state that the scattered field must consist only of outward going or decaying
waves, that is, waves propagating or evanescing in the positive x-direction.

Equations (3.5)–(3.10) comprise the boundary value problem for the scattered potential,
φ(x, y). Further, in view of the boundary condition (3.7) we can seek solutions even in x and
hence deal with a duct of doubly infinite extent (−∞ < x < ∞). Since φ contains only outgoing
waves this field can be modelled in terms of an even source (or delta function) situated at the
membrane edge, y = a, x = 0 (see Leppington, 1978). Thus, the membrane equation becomes

{
∂2

∂x2
+ µ2

}
∂φ

∂y
+ αφ = 2Dδ(x), y = a, −∞ < x < ∞, (3.11)

where the constant D is determined from the edge condition. The boundary value problem is
now amenable to solution by Fourier transform techniques and omitting all analysis for the sake
of brevity, the solution expressed in integral form is

φ(x, y) = −D

π

∫ ∞

−∞
cosh{γ(s)y}e−isx

K(s)
ds (3.12)

where
K(s) = (s2 − µ2)γ sinh(γa)− α cosh(γa), γ = (s2 − 1)1/2 (3.13)

and the required edge behaviour (3.10) is ensured by setting

D = 2πAγ0 sinh(γ0a)
{∫ ∞

−∞
γ sinh(γa)

K(s)
ds

}−1

. (3.14)

The integration path is indented above any singularities on the negative real axis and below
any on the positive real axis. That (3.12) is the exact solution of the boundary value problem
is easily verified by direct substitution into the relevant equations. The function K(s) is the
characteristic function for the problem and in fact is the dispersion function cited in (2.10)
specialized to the case of boundary conditions (3.6), (3.8). The roots of the dispersion relation
K(s) = 0, as discussed in the previous section for this class of boundary value problems,
are discrete and occur in pairs; hence s = ±νn, n = 0, 1, 2, 3, . . . and these represent the
wavenumbers, in the x direction, of travelling or evanescent waves that comprise the scattered
field. Associated with the νn are

γn = (ν2
n − 1)1/2, n = 0, 1, 2, 3, . . . (3.15)

of which γ0 is positive real and γn, n > 0 are positive imaginary for all ranges of the parameters
a, µ, α. This can be shown to be the case simply by examining the dispersion relation K(s) = 0
in the form

γ tanh(γa) = α/(γ2 + 1− µ2), (3.16)

and plotting both sides of this equation for real and purely imaginary values of γ. The inter-
sections of these curves reveal the location of the νn; note that a finite, and increasing as a
increases, number of the roots lies on the real axis between 0 and 1. In fact it can be shown that
all the +νn roots lie on the semi-infinite lines <(νn) ≥ 0 or =(νn) ≥ 0 and νn ∼ γn ∼ inπ/a,
n >> 1. Again, the precise detail of the location of the roots is not germane to the main thrust
of this article but has been very well studied elsewhere (cf. the work by Cannell on elastic plate
scattering (Cannell, 1975)). The root ν0 corresponds to the subsonic fluid-coupled structural
wave and thus appears in the forcing term, (3.3). Due to the nature of the sound field in a
duct, which comprises only discrete modes (i.e. the dispersion function is free of branch-cuts),
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the integral (3.12) can be expressed as an infinite sum of modes. This is achieved by deform-
ing the contour of integration in (3.12) into the lower half-plane and picking up the residue
contributions at each pole s = −νn. Omitting details it is found that

φ = −iD
∞∑

n=0

γn sinh(γna)
νnCn

cosh(γny)eiνnx (3.17)

where D can be written as

D = −2iAγ0 sinh(γ0a)

[ ∞∑

n=0

γ2
n sinh2(γna)

νnCn

]−1

(3.18)

in which
Cn =

1
2
{αa + (3γ2

n + 1− µ2) sinh2(γna)}. (3.19)

It is easy to show that Cn is related to the dispersion function via

Cn =
1
2

sinh(γna)
dK(s)

dγ

∣∣∣∣
s=νn

. (3.20)

Finally, from (3.17) one can determine the reflected fluid-coupled membrane wave term. In
total (recall the part subtracted from φtot in (3.2), (3.3)) it is found to be

<
[(

A− iD
γ0 sinh(γ0a)

ν0C0

)
cosh(γ0y)eiν0x

]
. (3.21)

The exact solution determined above by the Fourier transformation method can now be
used as a convenient check on the direct approach using eigenfunction expansions and the
orthogonality relation established in the previous section. The scattered field can easily be
shown, by separation of variables, to be representable in the form

φ =
∞∑

n=0

Bn cosh(γny)eiνnx (3.22)

(cf. (3.17)), which satisfies Helmholtz’ equation and boundary conditions (3.6) and (3.8). The
eigenvalues νn are just those discussed above. The coefficients Bn, n = 0, 1, 2, . . . are to be
determined by applying both an appropriate condition along the vertical interface x = 0,
0 ≤ y ≤ a, and the edge condition. For the boundary value problem described above, the
most convenient form of the orthogonality relation is that given in (2.14). From boundary
conditions (3.6) and (3.8) it is easily shown that

Bnm

Amn
=

Bmn

Amn
=

−α

ν2
m − ν2

n

, (3.23)

so that we obtain

(Ym, Yn) = α

∫ a

0
Ym(y)Yn(y) dy + Y ′

m(a)Y ′
n(a) =

{
0, m 6= n,
Cn, n = m,

(3.24)

where Yn(y) = cosh(γny). The constant Cn is easily shown to take the value given by (3.19).
The inner-product relation (2.29) can now be employed on φx(x, y), which yields

(φx, Yn) = α

∫ a

0
φx(x, y)Yn(y) dy + φxy(x, a)Y ′

n(a) = iνnBnCneiνnx. (3.25)
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Thus, taking the limit x ↓ 0 and employing the boundary condition (3.7) gives the value of the
coefficients:

Bn = −i
γn sinh(γna)

νnCn
φxy(0+, a) (3.26)

which are given in terms of the constant

E = φxy(0+, a) ≡ lim
x↓0

φxy(x, a) (3.27)

and this is just the value of the membrane slope at its edge. Hence, the solution to the boundary
value problem is

φ(x, y) = −iE
∞∑

n=0

γn sinh(γna)
νnCn

cosh(γny)eiνnx (3.28)

and, applying the edge condition (3.10), we also have

∞∑

n=0

γnBn sinh(γna) = −2Aγ0 sinh(γ0a) (3.29)

from which we finally deduce the value of the constant as

E = −2iAγ0 sinh(γ0a)

[ ∞∑

n=0

γ2
n sinh2(γna)

νnCn

]−1

. (3.30)

By inspection of (3.30) and (3.18), D ≡ E and so the two solutions, (3.12) and (3.28), are
identical. In particular, this verifies that the set of eigenfunctions (3.22) is complete, and that
the orthogonality relation (2.12) or (2.14) can be used constructively for dealing with problems
with corner or edge discontinuities. As a final note, we highlight the corner discontinuity in this
example:

lim
x↓0

φxy(x, a) = lim
x↓0

φyx(x, a) 6= lim
y↑a

φxy(0, y) = lim
y↑a

φyx(0, y). (3.31)

It is easy to show from (3.28) and the boundary condition (3.7) that the expressions on the
right-hand side of the inequality are zero, whilst the left-hand side takes the value E.

4 Application to the scattering of sound by an abrupt change
in the boundary conditions of a waveguide

The problem under consideration in this section is the sound field generated when a plane
acoustic wave is scattered by a material discontinuity in a two-dimensional waveguide. The
waveguide is formed by an infinite rigid surface lying along y = 0 together with a rigid surface
lying along the line y = a, x < 0 and a membrane, with parameters α and µ as in (3.8),
occupying y = a, x > 0. The interior of the waveguide contains a compressible fluid of sound
speed c and density ρ whilst the region exterior to the duct is in vacuo; see figure 3. A plane
acoustic wave of unit amplitude and harmonic time dependence is incident in the positive x-
direction along the waveguide towards x = 0. Once again the non-dimensionalization introduced
in section 3 is employed.

This is a standard Wiener-Hopf problem; however, the aim of this section is to demonstrate
how the eigenfunction technique yields a solution in a form that is very convenient for numerical
evaluation. As mentioned in section 3, the membrane boundary condition is of sufficiently high-
order to require an edge condition to be imposed at y = a, x = 0. Although the technique
of section 3 could be applied here, an alternative simple approach is used to enforce the edge
condition for this problem. The method used here, whilst elegant, is not quite as general as
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FIG. 3. A duct containing a compressible fluid. On y = 0, −∞ < x < ∞ and on y = a, x < 0 the
walls are hard; on y = a, x > 0 the duct boundary is a thin membrane with condition (3.8).

that of section 3 being applicable only for jumps in boundary conditions and not usually for
discontinuities in geometry.

It is convenient to express the total non-dimensional fluid velocity potential, φtot(x, y), in
terms of two separate scattered fields for x < 0 and x > 0, both of which are assumed to have
harmonic time dependence. Thus

φtot(x, y, t) =

{
< [{φ1(x, y) + eix + e−ix}e−it

]
, x < 0,

< [{φ2(x, y)}e−it
]
, x > 0,

(4.1)

where the incident field again includes a reflected wave of equal amplitude for convenience.
The boundary value problem may be formulated in terms of the scattered potentials. These
quantities satisfy Helmholtz’ equation, that is

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
φj(x, y) = 0, j = 1, 2. (4.2)

On the two rigid duct surfaces the normal component of fluid velocity vanishes, that is

∂φj

∂y
= 0, j = 1, 2, y = 0, −∞ < x < ∞, (4.3)

∂φ1

∂y
= 0, y = a, x < 0. (4.4)

The remaining duct surface, formed by a semi-infinite membrane, is governed by the non-
dimensional equation (3.11),

{
∂2

∂x2
+ µ2

}
∂φ2

∂y
+ αφ2 = 0, y = a, x > 0, (4.5)

where the parameters µ and α are defined in (3.9). The two scattered potentials must be
matched across the interface at the boundary discontinuity and the appropriate conditions
comprise continuity of pressure and velocity across x = 0. That is,

φ1(0, y) + 2 = φ2(0, y), 0 ≤ y ≤ a, (4.6)
∂φ1

∂x
(0, y) =

∂φ2

∂x
(0, y), 0 ≤ y ≤ a, (4.7)
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respectively. An edge condition must be applied at the membrane junction and the most general
form for this is

b̄
∂2φ2

∂x∂y
(0+, a) + ā

∂φ2

∂y
(0+, a) = 0 (4.8)

where as before f(0+, a) stands for limx↓0 f(x, a), and ā and b̄ are given constants. In this
example, the usual membrane edge condition is that with zero displacement, b̄ = 0. However, it
is possible to have other conditions, such as zero membrane slope (ā = 0) where the membrane
slides without friction over a perpendicular boundary. The full condition (4.8), with ā 6= 0, b̄ 6=
0, is perhaps artificial when applied to a membrane, but is illustrative of the more complicated
edge conditions which may arise in problems involving elastic plates, see for example Lawrie
& Abrahams (1997). Finally, as usual, the scattered fields comprise outward going waves only,
that is, all scattered waves travel away from the discontinuity.

It is a simple matter to show, by means of separation of variables, that the following forms
for φ1 and φ2 can be obtained:

φ1(x, y) =
∞∑

n=0

An cos(nπy/a)e−iλnx, (4.9)

φ2(x, y) =
∞∑

n=0

Bn cosh(γny)eiνnx. (4.10)

Here λn = (1− n2π2/a2)1/2, n = 0, 1, 2, . . ., are positive real for n < a/π or positive imaginary,
and γn = (ν2

n − 1)1/2, n = 0, 1, 2, . . ., with νn defined, as before, to be the roots of K(s) = 0,
see (3.13), with <(νn) > 0 and/or =(νn) > 0. Then, (4.6) and (4.7) give

∞∑

n=0

Bn cosh(γny) = 2 +
∞∑

n=0

An cos(nπy/a), 0 ≤ y ≤ a (4.11)

and ∞∑

n=0

νnBn cosh(γny) = −
∞∑

n=0

λnAn cos(nπy/a), 0 ≤ y ≤ a. (4.12)

The eigenfunction expansions for x < 0 and x > 0 satisfy two different orthogonality relations.
For x < 0 the standard Fourier cosine series orthogonality relation holds (Churchill & Brown,
1987), whereas for x > 0 equation (3.24) holds. Whilst both of these relations must be used,
there is an element of choice as to which is applied to (4.11) and which to (4.12). It is now
demonstrated that the choice of application of orthogonality relations is commensurate with
the edge-condition in force. The cases ā = 0 and b̄ = 0 in (4.8) are examined in turn.

4.1 Case A: zero slope membrane edge condition

In this example the membrane is chosen to have zero slope at x = 0, y = a, that is when
φ2xy(0+, a) = 0 or ā = 0. It will now be shown to be expedient to apply the Fourier cosine
series orthogonality relation to (4.11). This yields

An = −2δn0 +
εn

a

∞∑

m=0

BmRmn (4.13)

where δnm is the Kronecker delta and εn, Rmn are defined by

εn =

{
1, n = 0
2, n > 0

(4.14)
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and
Rmn =

∫ a

0
cosh(γmy) cos(nπy/a) dy = (−1)n sinh(γma)

γm{1 + ( nπ
aγm

)2} . (4.15)

Now, the inner-product relation (2.29) employed on ∂φ2/∂x, can be simplified using (4.10) and
the definition of the inner product (3.24), and this yields

α
∞∑

n=0

νnBneiνnx
∫ a

0
YmYn dy +

∞∑

n=0

νnBnY ′
n(a)eiνnxY ′

m(a) = BmνmCmeiνmx (4.16)

for all m, where as before Yn(y) = cosh(γny). Taking x ↓ 0, equation (4.16) may be recast into
the form

α
∞∑

n=0

νnBn

∫ a

0
YmYn dy − iY ′

m(a)
∂2φ2

∂y∂x
(0+, a) = BmνmCm, (4.17)

so that, for the edge condition φ2xy(0+, a) = 0, the orthogonality relation reduces simply to

α
∞∑

n=0

νnBn

∫ a

0
YmYn dy = BmνmCm, m = 0, 1, 2, 3, . . . . (4.18)

Note that this now resembles the usual form found in Sturm-Liouville problems. Hence, mul-
tiplying (4.12) by Yn(y), integrating term by term over the duct 0 ≤ y ≤ a and using (4.18)
gives

α
∞∑

m=0

νmBm

∫ a

0
YnYm dy = BnνnCn = −α

∞∑

`=0

λ`A`Rn` (4.19)

for all integers n ≥ 0 and hence,

Bn = − α

νnCn

∞∑

`=0

λ`A`Rn`. (4.20)

Finally, on eliminating A` from (4.20) using (4.13), it is found that Bn satisfies the algebraic
system

Bn =
α

νnCn

{
2Rn0 − 1

a

∞∑

m=0

Bm

∞∑

`=0

εlλ`Rm`Rn`

}
, (4.21)

which is consistent with the equivalent expression derived by Warren & Lawrie (1996). Once
solved, the Bn are substituted into (4.13) to determine the An.

4.2 Case B: zero displacement membrane edge condition

To obtain the coefficient relations when the membrane is pinned at the point x = 0, y = a, i.e.
when φ2y(0+, a) = 0 or b̄ = 0, the alternative approach is employed. The Fourier cosine series
orthogonality relation is applied to (4.12) instead of (4.11). In this case it is found that

An = − εn

aλn

∞∑

m=0

νmBmRmn. (4.22)

Similarly, the inner-product relation (2.29), (3.24) is employed on φ2(x, y) from (4.10), which
yields as x ↓ 0

α
∞∑

n=0

Bn

∫ a

0
YmYn dy +

∞∑

n=0

BnY ′
n(a)Y ′

m(a) = BmCm, m = 0, 1, 2, 3, . . . . (4.23)

15



It follows that the orthogonality relation may be recast as

α
∞∑

n=0

Bn

∫ a

0
YmYn dy + Y ′

m(a)
∂φ2

∂y
(0+, a) = BmCm, (4.24)

so that, for the edge condition φ2y(0+, a) = 0, it becomes

α
∞∑

n=0

Bn

∫ a

0
YmYn dy = BmCm, m = 0, 1, 2, 3, . . . . (4.25)

Equation (4.25) can now be employed in (4.11) to obtain

α
∞∑

m=0

Bm

∫ a

0
YnYm dy = BnCn = 2αRn0 + α

∞∑

`=0

A`Rn`. (4.26)

It follows that

Bn =
2α

Cn
Rn0 +

α

Cn

∞∑

`=0

A`Rn`. (4.27)

Finally, on eliminating A` from (4.27), it is found that

Bn =
2α

Cn
Rn0 − α

aCn

∞∑

m=0

νmBm

∞∑

`=0

ε`

λ`
Rm`Rn`. (4.28)

As in the previous case, once this is solved for the Bn the other coefficients, An, are found from
(4.22).

4.3 Case C

Having demonstrated the efficient application of the reduced orthogonality relations for the
cases ā = 0, b̄ = 0 in the membrane edge condition (4.8), it is now straightforward to see how
to apply it in general. That is, the relations (4.17) and (4.24) can be combined as

∞∑

n=0

αBn(ib̄νn + ā)
∫ a

0
YnYm dy + Y ′

m(a)
(
b̄φxy(0+, a) + āφy(0+, a)

)
= BmCm(ib̄νm + ā) (4.29)

which is deliberately chosen as ā times (4.11) plus ib̄ times (4.12) in order that the second term
on the left-hand side vanishes owing to (4.8). Therefore,

(ib̄νn + ā)BnCn = 2āαRn0 + α
∞∑

`=0

A`Rn`(ā− ib̄λ`). (4.30)

Similarly, the orthogonality relation for Fourier series can be applied to any other linear com-
bination of (4.11), (4.12). For example, it is possible to take the sum of ib̄ times (4.11) and ā
times (4.12), which yields

(ib̄− āλn)An = −2ib̄δn0 +
εn

a

∞∑

m=0

BmRmn(ib̄ + āνm). (4.31)

Note that when this combination is linearly independent of (4.30), i.e. for ā 6= ±ib̄, equations
(4.30) and (4.31) together constitute an infinite system of linear equations for the unknowns
An, Bn. Notice that they reduce to the coupled pairs (4.13), (4.20) or (4.22), (4.27) when ā = 0
or b̄ = 0 respectively.
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4.4 The behaviour of the coefficients

It is easy to verify that, for the three cases above, the equations satisfied by the Bn coefficients
lead to different solutions. In particular, it is sufficient to prove this by showing that the decay
in the value of Bn as n →∞ is different in the cases A and B. Furthermore, by examining the
convergence of series, it is possible to prove that the infinite systems are solvable. This will be
addressed in a later article.

The matrix Rmn (equation (4.15)) appearing in (4.13), (4.20), (4.22) and (4.27) can be
rewritten via the dispersion relation as

Rmn =
α(−1)n cosh(γma)

(γ2
m + (nπ/a)2)(γ2

m + 1− µ2)
(4.32)

and so by inspection,

Rmn ∼ α(−1)n+m(mπ/a)−4, m →∞, n fixed, (4.33)
Rmn ∼ (−1)nγm sinh(γma)(nπ/a)−2, n →∞, m fixed. (4.34)

However, γm approaches imπ/a as m →∞ and so for the diagonal elements, the denominator
contains a term which can be shown to behave as

γ2
m + (mπ/a)2 ∼ −2α

a

(
a

mπ

)2

, m →∞. (4.35)

Therefore,
Rmm ∼ a

2
, m →∞ (4.36)

and it is easy to show that
Cm ∼ αa

2
(4.37)

in the same limit. The O(1) diagonal elements can be removed from (4.13), (4.20) to give the
system

An − εn

2
Bn = −2δn0 +

εn

a

∞∑

m=0

BmSmn, (4.38)

αaλn

2νnCn
An + Bn = − α

νnCn

∞∑

m=0

λmAmSnm, (4.39)

where
Smn = Rmn − a

2
δmn, (4.40)

which decays rapidly with m and n. The pair of equations is solvable by truncation or by
iteration; the latter yields analytically that

Am ∼ −Bm = (−1)mm−2k1, (4.41)

for large m, where

k1 =
a

π2

∞∑

n=0

γnBn sinh(γna) =
a

π2
φ2y(0+, a), (4.42)

for the particular edge condition φxy(0+, a) = 0. The coupled pair of equations, and the
asymptotic result (4.41), can be confirmed from the Wiener-Hopf solution and indeed an exact
solution is obtainable by this method. In general it will be unlikely that there is a better
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alternative approach to the method employed here as the system in the form (4.38), (4.39)
constitutes a particularly efficient route for determining the unknown coefficients.

For the alternative edge condition, φy(0+, a) = 0, equations (4.22), (4.27) may be recast as

An +
εnνn

2λn
Bn = − εn

aλn

∞∑

m=0

νmBmSmn, (4.43)

− αa

2Cn
An + Bn =

2α

Cn
Rn0 +

α

Cn

∞∑

m=0

AmSnm, (4.44)

which result can again be proved by Wiener-Hopf methods. Iteration reveals that

Am ∼ Bm ∼ (−1)mm−3k2, m →∞, (4.45)

where

k2 =
ia2

π3

∞∑

n=0

νnγnBn sinh(γna) =
a2

π3
φ2xy(0+, a). (4.46)

Clearly, (4.41) and (4.45) indicate that cases A and B have quite different solutions, as indeed
does case C.

As a final point to note, if one employs the orthogonality relation (4.16) for the edge condition
φy(0+, a) = 0 rather than φxy(0+, a) = 0, then the second term in (4.17) does not vanish. Thus,
an extra constraint to force the requisite edge condition is needed, and this can be incorporated
in the fashion discussed in the previous section.

5 Concluding remarks

The two examples in sections 3 and 4 have demonstrated that duct model problems with high-
order boundary conditions can be reduced, by eigenfunction expansions and mode-matching,
to systems of coupled equations, for example (4.11) and (4.12). Via the application of an or-
thogonality relation detailed in section 2, together with explicit procedures for ‘building-in’
the edge conditions, the coupled systems were re-expressed as algebraic equations which are
straightforward to solve by truncation. In practise, such systems demonstrate rapid numerical
convergence; this, together with other analytical results (cf. system investigated in Abrahams
& Wickham, 1991) suggest that these systems are in fact `2. An alternative approach to veri-
fying this convergence result is to obtain the exact expressions for the eigenfunction expansion
coefficients (An, Bn) via the Wiener-Hopf technique. The two examples were illustrative, in
that they demonstrated the new approach taken by the authors, yet are simple enough to be
amenable to exact solution; this provided a direct check on the efficacy of the proposed method.
It is important to note that, as in section 4, the nature of the solution usually changes signifi-
cantly for different edge conditions. This was demonstrated by the different behaviour in n of
the modal coefficients An, Bn in (4.41), (4.45). Without specification of the edge conditions,
the lack of uniqueness in the boundary value problems is manifested in the occurrence of extra
(non-integral) terms in the orthogonality relation (2.14). The non-uniqueness is, in general,
resolved by applying the edge conditions as shown in section 3. Sometimes, a judicious appli-
cation of the orthogonality relation to an appropriate choice of mode-matching equation (see
section 4), ensures automatic satisfaction of the required edge-behaviour and leads to a unique
solution.

The generalization of the present approach to complex boundary value problems of the type
illustrated in figure 1 is straightforward. Eigenfunction expansions are generated in each region
of continuous material and geometrical properties, and these are matched across the interface
at the points of discontinuous boundary. The orthogonality relation (2.12) is employed at each
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interface with coefficients chosen for the given boundary equation, and any edge conditions
employed at this stage. The coupled second-kind Fredholm systems of equations resulting from
each boundary discontinuity are combined to generate a large, but easily solved, linear algebraic
matrix equation. Note that the duct may be of infinite or finite extent in x, and the procedure is
easily generalizable to three-dimensional models. That is, wave propagation problems involving
pipes or tubes of arbitrary cross-section, with flexible walls, will have an analogous orthogonality
relation to that in (2.12).

For models of wave propagation in non-ducted regions the wavenumber spectrum is contin-
uous. Thus, the present approach is not applicable and instead transform methods, including
the Wiener-Hopf technique (Cannell, 1975) and its extensions, may be appropriate. However,
for pipes and duct models, where both mode-matching and transform methods are valid, the
former is usually simpler and easier to employ. Therefore, the present approach for dealing with
complicated high-order boundary conditions, which yields tractable and versatile orthogonality
relations, appears to offer an attractive solution method (Warren & Lawrie, 1996).
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