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Abstract

A class of boundary value problems, that has application in the propagation of

waves along ducts in which the boundaries are wave-bearing, is considered. This class

of problems is characterised by the presence of high order derivatives of the dependent

variable(s) in the duct boundary conditions. It is demonstrated that the underlying

eigenfunctions are linearly dependent and, most significantly, that an eigenfunction

expansion representation of a suitably smooth function, say f(y), converges point-wise

to that function. Two physical examples are presented. It is demonstrated that, in

both cases, the eigenfunction representation of the solution is rendered unique via the

application of suitable edge conditions. Within the context of these two examples, a

detailed discussion of the issue of completeness is presented.
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1 Introduction

The class of boundary value problems considered in this article is one that occurs in a

number of fields of applied mathematics, especially water-waves and structural acoustics.

Common to both these areas are problems which involve the propagation of waves along

waveguides in which one or both of the boundaries are described by the Robin’s or a

higher-order condition. It is with the high-order boundary conditions that this article, is

concerned. That is, boundary conditions that contain high-order spacial derivatives in the

axial direction of the waveguide.

Andronov and Belinsky (1990) were amongst the first authors to demonstrate that the

eigenfunctions arising for problems of this class display unusual orthogonality properties.

They considered a specific but typical example. Later, Lawrie and Abrahams (1999) de-

scribed the general boundary value problem for a broad class of such problems. They

studied the underlying eigensystem and derived the orthogonality property for the general

case. They further demonstrated that a range of physical problems could be successfully

solved by expanding, for example, the velocity potential in terms of these eigenfunctions.

Since then several authors, see for example Warren et al (2002), Evans and Porter (2003),

Kaplunov et al (2004), Lawrie and Guled (2006) have used this class of eigenfunction expan-

sion together with the appropriate orthogonality property to solve a wide range of problems.

To date, however, to the best of the author’s knowledge, little has been published regarding

the formal properties of the eigenfunctions. This article goes some way to redressing the

balance by establishing, in a rigorous manner, some of the most significant properties of

the eigenfunctions for this class of problem.

In section 2 the general boundary value problem is stated and the orthogonality property

is presented in a slightly different form to that derived by Lawrie and Abrahams (1999).

The derivation of the recast form is given in Appendix A. The analytic properties of the

eigenfunctions are presented in section 3. Firstly, it is proved that the infinite set of

eigenfunctions is linearly dependent. Most significantly, however, it is proved that an

eigenfunction expansion representation of a suitably smooth function, say f(y), converges

point-wise to that function. Crucial to these results is the evaluation of several infinite

sums. These are evaluated using a complex variable method, details of which may be

found in Lawrie and Kirby (2006). A comprehensive discussion of the properties proved in

section 3 and their implications is presented in section 4. The most pertinent points, for
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example completeness of the eigenfunctions and uniqueness of the eigenfunction expansion,

are demonstrated by use of two physical examples. Some infinite sums relevant to this

section are discussed in Appendix B. Finally, some concluding remarks are made in section

5.

2 The generalised boundary value problem

The analysis presented herein applies equally to boundary value problems governed by

Laplace’s or Helmholtz’ equation. For ease of exposition, however, the general boundary

value problem is posed in terms of Helmholtz’ equation, that is
{

∂2

∂x2
+

∂2

∂y2
+ 1

}
φ(x, y) = 0 (2.1)

in which x and y are the usual Cartesian coordinates but are non-dimensionalised with

respect to k−1. Here k is the fluid wavenumber, that is k = ω/c where c is the fluid sound

speed and ω is the frequency of the harmonic time dependence. The field equation holds

in a strip of finite height 0 ≤ y ≤ a and infinite length −∞ < x < ∞ which is bounded

by walls described by high-order boundary conditions. The mathematical statement of the

boundary conditions is

La

(
∂

∂x

)
∂φ

∂y
+Ma

(
∂

∂x

)
φ = 0, y = a, −∞ < x < ∞, (2.2)

on the upper waveguide surface together with

L0

(
∂

∂x

)
∂φ

∂y
+M0

(
∂

∂x

)
φ = 0, y = 0, −∞ < x < ∞, (2.3)

on the lower surface. Here Lp( ∂
∂x) and Mp( ∂

∂x), p = a,0, are differential operators of the

form

Lp

(
∂

∂x

)
=

Kp∑

k=0

cp
k

∂2k

∂x2k
, Mp

(
∂

∂x

)
=

Jp∑

j=0

dp
j

∂2j

∂x2j
, (2.4)

where c0
k, ca

k, d0
j , da

j are constant coefficients. Note that, only even derivatives in x are

included in the above boundary conditions. (Odd derivatives do occur in systems which

are damped, and the presence of such derivatives significantly alters the nature of the

underlying eigensystem. In particular, the dispersion relation will not be an even function

of the wave number. It is not, therefore, immediately obvious that the results presented

herein apply to such systems.) Note also, that higher derivatives in y are easily removed

by recourse to equation (2.1), hence the absence of such terms in (2.2) and (2.3).
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The general solution of the boundary value problem described by (2.1)–(2.4) can be

expressed as a separable eigenfunction expansion of the form

φ(x, y) =
∞∑

n=0

AnYn(y)e±isnx, x ≷ 0. (2.5)

Here Yn(y) satisfies the eigensystem

Y ′′
n (y) = γ2

nYn(y), γn = (s2
n − 1)1/2 (2.6)

where the primes denote differentiation with respect to y and the quantities sn, n =

0, 1, 2, . . . are defined as the roots of the coupled equations

Pa(sn)Y ′
n(a) + Qa(sn)Yn(a) = 0, (2.7)

P0(sn)Y ′
n(0) + Q0(sn)Yn(0) = 0. (2.8)

The functions Pp(s) and Qp(s), p = a, 0, are characteristic polynomials and correspond to

the action of the operators Lp( ∂
∂x) and Mp( ∂

∂x) on the eigen-expansion (2.5), i.e. Pp(sn) ≡
Lp(isn), Qp(sn) ≡Mp(isn).

It is a simple matter to show that (2.6)–(2.8) imply an explicit form for Yn(y) which

without loss of generality may be written as:

Yn(y) = P0(sn) cosh(γny)− 1
γ n

Q0(sn) sinh(γny). (2.9)

The dispersion relation can be deduced using (2.9) together with (2.7). That is

K(s) =
[
γ2P0(s)Pa(s)−Q0(s)Qa(s)

] sinh(γa)
γ

+ [Qa(s)P0(s)− Pa(s)Q0(s)] cosh(γa)

= τ(s)
sinh(γa)

γ
+ λ(s) cosh(γa) = 0, (2.10)

where γ2 = s2 − 1. The fact that the operators (2.4) contain only even derivatives in x

ensures that the characteristic polynomials are functions of s2. It is straightforward to

prove that, for the general case in which Pp(s), Qp(s), p = 0, a, contain real coefficients:

(i) for every root sn there is another root −sn;

(ii) there is a finite number of real roots (that number depending on the number of real

zeros of the polynomials τ(s) and λ(s)) located on |s| > 1;

(iii) there is an infinite number of roots located on the imaginary axis of γ, or equiva-

lently a finite number on |<(s)| < 1, =(s) = 0, and an infinite number on <(s) = 0,=(s) > 0;
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(iv) there is a finite number of roots, sn, with non-zero real and imaginary parts.

In order that (2.5) converge for the x ≷ 0, the convention is adopted that the +sn roots

have either <(sn) > 0,=(sn) = 0 or =(sn) > 0. They are ordered sequentially, real roots

first, starting with the largest real root and then by increasing imaginary part. Thus, s0 is

always the largest real root. It is worthwhile commenting that for any complex root, say

sc, lying in the upper half of the complex s-plane, then −s∗c , where ∗ indicates the complex

conjugate, also lies in this half plane. Further, it is assumed that sn 6= 0 and that no root

is repeated.

It is expedient to recast the orthogonality relation presented by Lawrie and Abrahams

(1999) into a slightly different form. The new form is equivalent to the original, but more

convenient for the analysis that follows. Thus, the eigenfunctions Yn(y) described by (2.6)–

(2.8) have the orthogonality property
∫ a

0
YmYn dy +

2pmn

(tmn + tnm)
(
Y ′

m(a)Y ′
n(a)− Y ′

m(0)Y ′
n(0)

)
(2.11)

+
2qmn

(tmn + tnm)
(Ym(a)Yn(a)− Ym(0)Yn(0))

+
rmn

(tmn + tnm)
(
Ym(a)Y ′

n(a) + Yn(a)Y ′
m(a)

)

− rmn

(tmn + tnm)
(
Ym(0)Y ′

n(0) + Yn(0)Y ′
m(0)

)
= δmnEn

where

tmn = P0(sm)Qa(sn)− Pa(sm)Q0(sn), (2.12)

pmn =
P0(sm)Pa(sn)− P0(sn)Pa(sm)

γ2
m − γ2

n

, (2.13)

qmn =
Q0(sm)Qa(sn)−Q0(sn)Qa(sm)

γ2
m − γ2

n

, (2.14)

rmn =
tmn − tnm

γ2
m − γ2

n

, (2.15)

and the non-zero constant En is given by

En =
Yn(a)

2snPa(sn)
K ′(sn). (2.16)

Note that, despite the fact that there may be a finite number of complex eigenvalues, it

is chosen to cast the orthogonality relation in terms of Yn(y) and Ym(y) rather than the

more conventional formulation which would employ Yn(y) and Y ∗
m(y). The reason for this

becomes apparent in section 4. Expression (2.11) has the advantage that the denominator

tmn + tnm 6= 0, however, this orthogonality property can be recast into various other forms.
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If, for example, Qp(s) 6= 0, p = 0, a then it is convenient to eliminate Yn(m)(a) and Yn(m)(0)

by using (2.7) and (2.8). It is then found that
∫ a

0
YmYn dy +

{
Pa(sn)Qa(sm)− Pa(sm)Qa(sn)

(γ2
m − γ2

n)

}
Y ′

m(a)Y ′
n(a)

Qa(sm)Qa(sn)
(2.17)

−
{

P0(sn)Q0(sm)− P0(sm)Q0(sn)
(γ2

m − γ2
n)

}
Y ′

m(0)Y ′
n(0)

Q0(sm)Q0(sn)
= δmnEn.

The quantity Pp(sj)Qp(sn)−Pp(sn)Qp(sj), p = 0, a is a polynomial in the two variables γ2
n

and γ2
j and is divisible by γ2

n − γ2
j . It follows that

Pp(sn)Qp(sm)− Pp(sm)Qp(sn)
(γ2

m − γ2
n)

=
Np∑

j=0

Np∑

k=0

bp
jkγ

2j
m γ2k

n , p = 0, a (2.18)

where the coefficients bp
jk = bp

kj are related to cp
k and dp

j of (2.4) and Np = max{Jp−1,Kp−
1}, p = 0, a. It follows that

∫ a

0
YmYn dy +

Na∑

j=0

Na∑

k=0

ba
jkγ

2j
m γ2k

n

Y ′
m(a)Y ′

n(a)
Qa(sm)Qa(sn)

(2.19)

−
N0∑

j=0

N0∑

k=0

b0
jkγ

2j
m γ2k

n

Y ′
m(0)Y ′

n(0)
Q0(sm)Q0(sn)

= δmnEn.

Should either Qa(s) = 0 or Q0(s) = 0, then (2.11) can be arranged into a form analogous

to (2.19) by eliminating Y ′
n(m)(a) and Y ′

n(m)(0) (as opposed to Yn(m)(a) and Yn(m)(0)) using

(2.7) and (2.8).

In this article attention is restricted to the following situations:

i) Qp(s) 6= 0,

∣∣∣∣
Pp(s)
Qp(s)

∣∣∣∣ = O
(
s2(Kp−Jp)

)
as |s| → ∞, with Kp > Jp, p = 0, a;

ii) Q0(s) = 0, P0(s) 6= 0,

∣∣∣∣
Pa(s)
Qa(s)

∣∣∣∣ = O
(
s2(Ka−Ja)

)
as |s| → ∞ with Ka > Ja;

iii) Qa(s) = 0, Pa(s) 6= 0
∣∣∣∣
P0(s)
Q0(s)

∣∣∣∣ = O(s2(K0−J0)) as |s| → ∞ with K0 > J0.

Since for each of these cases Kp > Jp, p = 0, a, the quantity Np is henceforth defined by

Np = Kp − 1, p = 0, a. It is straightforward then to show that

γn+Ka+K0 ∼
inπ

a
− inπλ(inπ/a)

a2τ(inπ/a)
, n >> 1 (2.20)

where γn = (s2
n− 1)1/2 and sn, n = 0, 1, 2, . . . are the roots to (2.10). Since condition i), ii)

or iii) applies, |τ(s)| > |γλ(s)| as |s| → ∞. Thus, the second term on the right hand side
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of (2.20) is o(n−1) as n → ∞. The reason for the shift in counter seen in (2.20) becomes

apparent in section 4. It should be noted that (2.5) reduces to the usual Fourier cosine

series if Qp(s) = 0, p = 0, a and Pp(s), p = 0, a is constant whilst the standard Sturm-

Liouville case is retrieved if Pp(s) and Qp(s) are all constant, p = 0, a. There are many

excellent texts that deal with analytic properties of these series, see for example Hanna

and Rowland (1990), this article is concerned only with the situation in which one or both

boundary conditions contain high-order derivatives. Excluded from this study are the cases

P0(s) = 0 or Pa(s) = 0 for which the eigenvalues γn do not have the form (2.20).

3 Analytic properties of the eigenfunctions

Theorem 1

Given that Pp(s) and Qp(s), p = 0, a satisfy condition i), ii) or iii) outlined above, the

eigenfunctions Yn(y) described by (2.6)–(2.8) are linearly dependent for 0 ≤ y ≤ a. Fur-

thermore, there are exactly K0+Ka linear combinations of the eigenfunctions that are equal

to zero. These linear combinations have the form

∞∑

n=0

Yn(a)Yn(y)γ2q
n

Pa(sn)En
= 0, 0 ≤ y ≤ a, q = 0, 1, 2, . . . Ka − 1, Ka > 0 (3.1)

and ∞∑

n=0

Yn(y)γ2q
n

En
= 0, 0 ≤ y ≤ a, q = 0, 1, 2, . . .K0 − 1, K0 > 0. (3.2)

Proof

Consider first expression (3.1). This sum can be evaluated by analysing the families of

poles in the integrand of a suitably chosen integral. The method is the same as that used

by Lawrie and Kirby (2006). The appropriate integral is

I1(y) =
1

2πi

∫ ∞

−∞

sY (s, y)f(s)
K(s)

ds, 0 ≤ y ≤ a, (3.3)

where the path of integration is indented above(below) any poles on the negative(positive)

real axis. The function Y (s, y) is defined by

Y (s, y) = P0(s) cosh(γy)− 1
γ

Q0(s) sinh(γy). (3.4)

where γ = (s2 − 1)1/2. Thus, the eigenfunctions Yn(y) are expressed in terms of Y (s, y)

by Yn(y) = Y (sn, y), n = 0, 1, 2 . . .. Note that, since the integrand is odd, I1(y) = 0. The

7



function f(s) is any even, analytic function which, in order that the integrand converge

when y = a, satisfies |f(s)| ≤ Ms2Na as |s| → ∞ where M is an arbitrary constant. Thus,

by the extended form of Liouville’s theorem, see Noble (1988), f(s) must be a polynomial

of, at most, degree 2Na. Clearly the integrand has poles only when K(s) = 0. On deforming

the path of integration onto a semi-circular arc of radius R >> 1 in the upper half plane

and evaluating the residue contributions for the poles crossed, it is found that, as R →∞
∞∑

n=0

snYn(y)f(sn)
K ′(sn)

=
∞∑

n=0

Yn(y)Yn(a)f(sn)
Pa(sn)En

= 0. (3.5)

Since f(s) is an even polynomial it may be cast in terms of γ2 = s2−1 and (3.1) immediately

follows. There are exactly Na + 1 = Ka sums of this form obtained by choosing q =

0, 1, . . . Na in (3.1). Sums involving more general polynomials, f(sn), are simply linear

combinations of these basic forms. Note that this result applies only for the situation

Na ≥ 0, equivalently Ka ≥ 1 since the integral I1(y) does not converge for Ka = 0.

Expression (3.2) is proved using the same technique but with the integral

I2(y) =
1

2πi

∫ ∞

−∞

sY (s, y)Pa(s)f(s)
K(s)Y (s, a)

ds, 0 ≤ y ≤ a, (3.6)

in which, unlike (3.3), the integrand contains two infinite families of poles. It is found that

∞∑

n=0

Yn(y)f(sn)
En

+ 2
∞∑

n=0

dnY (dn, y)f(dn)Pa(dn)
K(dn) d

dsY (s, a)|s=dn

= 0 (3.7)

where dn, n = 0, 1, 2, . . . are the roots of Y (s, a) = 0. It is convenient to rearrange the second

sum of (3.7) using the relation δnP0(dn) = Q0(dn) tanh(δna) which, with δn = (d2
n − 1)1/2,

is a direct consequence of Y (dn, a) = 0. Thus,

K(dn) = −Pa(dn)Q0(dn)
cosh(δna)

(3.8)

and

Y (dn, y) = −Q0(dn) sinh[δn(y − a)]
δn cosh(δna)

, (3.9)

so that (3.7) becomes

∞∑

n=0

Yn(y)f(sn)
En

+ 2
∞∑

n=0

dn sinh[δn(y − a)]f(dn)
δn

d
dsY (s, a)|s=dn

= 0. (3.10)

The second sum can be evaluated by analysing the pole structure of the integrand of I3(y)

where

I3(y) =
1

2πi

∫ ∞

−∞

s sinh[γ(y − a)]f(s)
γY (s, a)

ds, 0 ≤ y ≤ a (3.11)
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and it is found that ∞∑

n=0

dn sinh[δn(y − a)]f(dn)
δn

d
dsY (s, a)|s=dn

= 0. (3.12)

As for the previous sum, f(s) is an even polynomial, in this case of degree, at most, 2N0,

and therefore (3.2) follows. There are exactly N0 + 1 = K0 sums of this form obtained

by choosing q = 0, 1, . . . N0 in (3.2). This result applies only for the situation N0 ≥ 0,

equivalently K0 ≥ 1 since the integral I2(y) does not converge for K0 = 0.

Lemma

Given that Pp(s) and Qp(s), p = 0, a satisfy condition i), ii) or iii) outlined above, the

eigenfunctions Yn(y) described by (2.6)–(2.8) have the property
∞∑

n=0

Yn(y)Yn(v)
En

= δ(v − y) + δ(v + y) + δ(v + y − 2a), 0 ≤ v ≤ a, 0 ≤ y ≤ a. (3.13)

Proof

In order to prove this result, it is expedient first to evaluate the convergent sum
∞∑

n=0

Yn(y)Zn(v)
En

(3.14)

where

Zn(v) =
∫ v

Yn(u) du . (3.15)

This sum can be evaluated by analysing the families of poles of the integral I4(v, y) where

I4(v, y) =
1

2πi

∫ ∞

−∞

sY (s, y)Z(s, v)Pa(s)
K(s)Y (s, a)

ds, −2a < v + y ≤ 2a. (3.16)

Here

Z(s, v) =
∫ v

Y (s, u) du = P0(s)
sinh(γv)

γ
−Q0(s)

cosh(γv)
γ2

(3.17)

and the path of integration is indented above(below) and poles on the negative(positive)

real axis. Since the integrand is odd, I4(v, y) = 0.

The integrand has poles when: (i) K(s) = 0 i.e s = sn, n = 0, 1, 2 . . .; (ii) Y (s, a) = 0

i.e. s = dn, n = 0, 1, 2 . . .; (iii) s = 1. Thus, on deforming the path of integration onto

a semi-circular arc of radius R >> 1 in the upper half plane and evaluating the residue

contributions for the poles crossed, it is found that, as R →∞
∞∑

n=0

snYn(y)Zn(v)Pa(sn)
K ′(sn)Yn(a)

+
∞∑

n=0

dnY (dn, y)Z(dn, v)
K(dn) d

dsY (s, a)|s=dn

(3.18)

− Q0(1)Pa(1){P0(1)− yQ0(1)}
K(1){P0(1)− aQ0(1)} = 2H(v + y − 2a),
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where H(.) is the Heaviside function, defined by

H(x) =





1, x > 0
1
2 , x = 0

0, x < 0

. (3.19)

The Heaviside function of (3.18) arises due to the contribution from the semi-circular arc

when v = y = a.

On using (2.16), it is found that,

∞∑

n=0

Yn(y)Zn(v)
En

= 2H(v + y − 2a) +
Q0(1)Pa(1){P0(1)− yQ0(1)}

K(1){P0(1)− aQ0(1)} (3.20)

− 2
∞∑

n=0

dnY (dn, y)Z(dn, v)
K(dn) d

dsY (s, a)|s=dn

It is convenient to rearrange the last term of (3.20) using (3.8), (3.9) and

Z(dn, v) = −Q0(dn) cosh[δn(v − a)]
δ2
n cosh(δna)

(3.21)

so that (3.20) becomes

∞∑

n=0

Yn(y)Zn(v)
En

= 2H(v + y − 2a) +
Q0(1)Pa(1){P0(1)− yQ0(1)}

K(1){P0(1)− aQ0(1)}

+ 2
∞∑

n=0

dnP0(dn) sinh[δn(y − a)] cosh[δn(v − a)]
(d2

n − 1) sinh(δna) d
dsY (s, a)|s=dn

. (3.22)

The sum on the right hand side of (3.22) is again evaluated by analysing the pole

structure of a suitable integral, in this case I5(v, y) where

I5(v, y) = − 1
2πi

∫ ∞

−∞

sP0(s) sinh[γ(y − a)] cosh[γ(v − a)]
(s2 − 1) sinh(γa)Y (s, a)

ds. (3.23)

As before, the path of integration is indented above(below) any poles on the negative(positive)

real axis and, since the integrand is odd, I5(v, y) = 0. The integrand of I5(v, y) has poles

when: (i) sinh(γa) = 0 i.e s = (1− n2π2/a2)1/2, n = 0, 1, 2 . . .; (ii) Y (s, a) = 0 i.e. s = dn,

n = 0, 1, 2 . . .; (iii) s = 1. Again, on deforming the path of integration and evaluating the

residue contribution for each pole, it is found that

2
∞∑

n=0

dnP0(dn) sinh[δn(y − a)] cosh[δn(v − a)]
(d2

n − 1) sinh(δna) d
dsY (s, a)|s=dn

= 2H(−v − y) +
P0(1)(a− y)

a{P0(1)− aQ0(1)}

− 2
π

∞∑

n=1

1
n

sin(
nπy

a
) cos(

nπv

a
) (3.24)
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where the Heaviside function arises due to the contribution from the semi-circular arc for

v = y = 0. The sum on the right hand side of (3.24) is a discontinuous function of y and v,

which takes the value zero when y = v = 0 or y = v = a. On using Gradshetyn and Rhyzik

(1980), it is easily shown that for −2a < y + v < 4a and 0 ≤ |v − y| ≤ 2a

2
π

∞∑

n=1

1
n

sin(
nπy

a
) cos(

nπv

a
) = −H(−y − v)−H(v − y) + H(y + v − 2a) + 1− y

a
. (3.25)

It follows from (3.22), (3.24)1 and (3.25) that, for 0 ≤ v ≤ a and 0 ≤ y ≤ a

∞∑

n=0

Yn(y)Zn(v)
En

= H(v − y)−H(−v − y) + H(v + y − 2a) + 1− y

a
(3.26)

+
Q0(1)P0(1){P0(1)− yQ0(1)}

K(1){P0(1)− aQ0(1)} +
P0(1)(a− y)

a{P0(1)− aQ0(1)} .

On differentiating (3.26) with respect to v expression (3.13) immediately follows. Note that

(3.26) and (3.13) hold only for 0 ≤ v ≤ a and 0 ≤ y ≤ a.

Theorem 2

Given that the coefficients

An =
1

En

{∫ a

0
f(v)Yn(v) dv

+
∞∑

m=0

2Ampmn

tmn + tnm

{
Y ′

m(a)Y ′
n(a)− Y ′

m(0)Y ′
n(0)

}

+
∞∑

m=0

2Amqmn

tmn + tnm
{Ym(a)Yn(a)− Ym(0)Yn(0)}

+
∞∑

m=0

2Amrmn

tmn + tnm

{
Ym(a)Y ′

n(a) + Y ′
m(a)Yn(a)

}

−
∞∑

m=0

2Amrmn

tmn + tnm

{
Ym(0)Y ′

n(0)− Y ′
m(0)Yn(0)

}
}

exist, where f(y) is any function that is M = max{2Ka − 1, 2K0 − 1} times differentiable

on the domain 0 ≤ y ≤ a and the eigenfunctions Yn(y) are defined by (2.6)–(2.8), then,

provided Pp(s) and Qp(s), p = 0, a satisfy condition i), ii) or iii), the series
∞∑

n=0

AnYn(y)

1The reader is advised that there are errors of sign in equations (3.24) and (3.26) as written above. These

do not, however, affect the result (3.13). The correct forms for (3.24) and (3.26) are given at the end of this

article
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converges point-wise to f(y) for 0 ≤ y ≤ a.

Proof

Assume that a suitably smooth function f(y), 0 ≤ y ≤ a can be expressed as an eigenfunc-

tion expansion so that

f(y) =
∞∑

n=0

AnYn(y). (3.27)

Let FN (y) be the sum of the first N terms of the eigenfunction expansion (3.27), thus

FN (y) =
N∑

n=0

AnYn(y). (3.28)

Without loss of generality, consider the case where Qp(s) 6= 0 and p = 0, a, then the

coefficients An can be recast as

An =
1

En

{∫ a

0
f(v)Yn(v) dv +

∞∑

m=0

Am

Na∑

j=0

Na∑

k=0

ba
jkγ

2j
m γ2k

n

Y ′
m(a)Y ′

n(a)
Qa(sm)Qa(sn)

(3.29)

−
∞∑

m=0

Am

N0∑

j=0

N0∑

k=0

b0
jkγ

2j
m γ2k

n

Y ′
m(0)Y ′

n(0)
Q0(sm)Q0(sn)





where Np = Kp − 1, p = 0, a. This expression may be substituted into the eigenfunction

expansion of the right hand side of (3.28), to obtain
N∑

n=0

AnYn(y) =
N∑

n=0

Yn(y)
En

{∫ a

0
f(v)Yn(v) dv (3.30)

+
∞∑

m=0

Am

Na∑

j=0

Na∑

k=0

ba
jkγ

2j
m γ2k

n

Y ′
m(a)Y ′

n(a)
Qa(sm)Qa(sn)

−
∞∑

m=0

Am

N0∑

j=0

N0∑

k=0

b0
jkγ

2j
m γ2k

n

Y ′
m(0)Y ′

n(0)
Q0(sm)Q0(sn)



 .

On interchanging the orders of summation and integration in the first term of (3.30),

rearranging the subsequent terms using (2.7)–(2.8) and letting N → ∞, expression (3.30)

becomes
∞∑

n=0

AnYn(y) =
∫ a

0
f(v)

∞∑

n=0

Yn(y)Yn(v)
En

dv (3.31)

−
∞∑

n=0

Yn(y)
En

∞∑

m=0

Am

Na∑

j=0

Na∑

k=0

ba
jkγ

2j
m γ2k

n

Y ′
m(a)Yn(a)

Qa(sm)Pa(sn)

−
∞∑

n=0

Yn(y)
En

∞∑

m=0

Am

N0∑

j=0

N0∑

k=0

b0
jkγ

2j
m γ2k

n .

12



Since the innermost two summations are finite and the summands are clearly separable in

m and n, this can be rewritten as
∞∑

n=0

AnYn(y) =
∫ ∞

−∞
F(v)

∞∑

n=0

Yn(y)Yn(v)
En

dv (3.32)

−
Na∑

j=0

Na∑

k=0

ba
jk

∞∑

m=0

Amγ2j
m

Y ′
m(a)

Qa(sm)

∞∑

n=0

Yn(y)Yn(a)γ2k
n

EnPa(sn)

−
N0∑

j=0

N0∑

k=0

b0
jk

∞∑

m=0

Amγ2j
m

∞∑

n=0

Yn(y)γ2k
n

En

where

F(v) = f(v)H(v)H(a− v). (3.33)

Note that, due to the manner in which the Heaviside function is defined, this extension of

f(v) introduces a multiplicative half at the points y = 0 and y = a. This, however, is con-

sistent with the fact that two of the delta functions present in (3.13) pick up contributions

from these points. Provided Np ≥ 0, the two inner sums are are zero, see (3.1) and (3.2).

(The case Np = 0 corresponds to Pp(s) = 1 which can occur only with Qp(s) = 0, p = 0, a

and for which the coefficients bp
jk = 0, p = 0, a.) Hence, on using Lemma 1, it is found that

∞∑

n=0

AnYn(y) = f(y), 0 ≤ y ≤ a. (3.34)

4 Discussion

Theorem 1 proves that the eigenfunctions Yn(y), n = 0, 1, 2, . . . are linearly dependent and

that there are exactly K0 + Ka infinite, linear combinations of these functions that are

equal to zero.

It is interesting, in this context, to note that, within any circular contour, Γ, of radius

R >> 1, R >> s0 centered at the origin of the complex s-plane, the dispersion function

K(s), see (2.10), has exactly 2(K0 + Ka) more roots than does L(s) = γ sinh(γa), γ =

(s2 − 1)1/2 which is the characteristic function that generates the standard Fourier cosine

series. It follows that, corresponding to the zeros within Γ, there are exactly K0 +Ka more

eigenfunctions Yn(y) than there are for the standard cosine series. This result is proved

using the Argument Principle, see for example, Churchill et al (1974). Since neither K(s)

or L(s) have any poles and there are no repeated roots
∫

Γ

{
K ′(s)
K(s)

− L′(s)
L(s)

}
ds = ZK − ZL, (4.1)
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where ZK and ZL are the number of zeros of K(s) and L(s) respectively within Γ. This

integral is easily evaluated and, provided R is sufficiently large, it is found that ZK −ZL =

2(K0 + Ka). Note that this result explains the shift of counter seen in (2.20).

A further interesting point is that, for problems involving elastic plates or membranes,

there will always be exactly K0 +Ka edge conditions to be applied at any plate/membrane

edge. These give K0 + Ka additional constraints on the solution to the boundary value

problem described by (2.6)–(2.8).

The above three points indicate that K0+Ka of the eigenfunctions can be removed from

the infinite set in order to produce a set of eigenfunctions that are linearly independent

and span the space of functions that are M = max{2Ka − 1, 2K0 − 1} differentiable on

the domain 0 ≤ y ≤ a. Equivalently, the solution obtained by application of the edge

conditions is unique.

The statement of the Theorem 2 includes the assumption that the coefficients An exist.

If it can be proved that the eigenfunctions specified in Theorem 2 are complete, then

it follows that the coefficients An will exist. This is, however, not a trivial issue and

is not addressed for the general case. It is clear, however, that for the many physical

situations the coefficients An do indeed exist even though completeness is, as yet, unproven.

The conditions describing elastic plates and membranes are typical examples of physical

boundaries conditions satisfying (2.7)–(2.8), and for these it is the case that Qp(s), p = 0, a

is constant. Under such circumstances (2.19) reduces to

∫ a

0
YmYn dy +

1
Q2

a

Na−1∑

j=0

Na−1∑

k=0

ba
jkY

(2j+1)
m (a)Y (2k+1)

n (a) (4.2)

− 1
Q2

0

N0−1∑

j=0

N0−1∑

k=0

b0
jkY

(2j+1)
m (0)Y (2k+1)

n (0) = δmnEn

where Qp, p = 0, a are constants and the bracketed superscripts indicate the order of

a derivative. Even though many such orthogonality relations are not inner products in

the strict sense (since (Yn, Yn) � 0), it is convenient to use an inner product notation to

represent them. Thus, (4.2) is rewritten as

(Ym, Ym) = δmnEn (4.3)
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where

(Ym, Ym) =
∫ a

0
YmYn dy +

1
Q2

a

Na−1∑

j=0

Na−1∑

k=0

ba
jkY

(2j+1)
m (a)Y (2k+1)

n (a)

− 1
Q2

0

N0−1∑

j=0

N0−1∑

k=0

b0
jkY

(2j+1)
m (0)Y (2k+1)

n (0). (4.4)

Then the coefficients An assume the form

An =
(f, Yn)
(Yn, Yn)

(4.5)

which is clearly defined and exists for all suitably smooth functions, f(y). It is important

to note that (Yn, Yn) 6= 0 whereas the quantity (Yn, Y ∗
n ) will be zero if sn is complex. It is

for this reason that the orthogonality relation is formulated in terms of Yn(y) and Ym(y)

rather than Yn(y) and Y ∗
m(y).

It is useful to consider two specific examples. In both cases, (non-dimensional) harmonic

time dependence e−it is implicitly assumed. The first example is one for which it is a rela-

tively straightforward procedure to confirm that the eigenfunctions are complete, whilst for

the second it is not. The purpose of the first example is to demonstrate that, even though

the eigenfunctions are linearly dependent, a unique eigenfunction expansion representation

of the solution to a given physical problem can be constructed by application of an appro-

priate number of physically relevant edge conditions. The uniqueness of this solution is not

in doubt since this example belongs to a class of problem that can also be solved via Fourier

integral methods, see Lawrie and Abrahams (1999). The second example cannot be solved

by recourse to Fourier integrals. In this case a viable solution method is to represent the

fluid velocity as an eigenfunction expansion and use the appropriate orthogonality property

together with the edge conditions. Since the coefficients of the eigenfunction expansion can

be explicitly evaluated, Theorem 2 guarantees point-wise convergence to the solution.

4.1 Example 1

Firstly, consider a waveguide in which both the upper an lower surfaces comprise membranes

but with different masses per unit area and/or tension. Then, P0(s) = −s2+µ2
1, Q0 = −α1,

Pa(s) = −s2+µ2
2 and Qa = α2 where the definitions of the constants α1, α2, µ1, µ2 are given,

for example, by Warrenet al (2002). In this case, the dispersion relation has no complex

roots, they are all either strictly real or imaginary. Expression (4.3) holds, together with

(Ym, Ym) =
∫ a

0
YmYn dy +

1
α2

Y ′
m(a)Y ′

n(a) +
1
α1

Y ′
m(0)Y ′

n(0) (4.6)
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which is, in fact, a true inner product. Various forms of this orthogonality relation have

appeared in the literature, see Lawrie and Abrahams (1999), Warren et al (2002), Kaplunov

et al (2004) and Lawrie and Guled (2006). The norm for the inner product (4.6) is defined

by

‖f‖2 = (f, f) ≥ 0. (4.7)

It follows that completeness is proved for this particular set of eigenfunctions, Yn(y), n =

0, 1, 2, . . ., if it can be shown that

‖f(y)− Fn(y)‖ → 0 as N →∞ (4.8)

where FN (y) is defined in (3.28). It is easily demonstrated, see for example Hanna and

Rowland (1990), that this is equivalent to proving that

∞∑

n=0

A2
nEn =

∫ a

0
f2(y) dy +

1
α2

(
f ′(a)

)2 +
1
α1

(
f ′(0)

)2
. (4.9)

It is clear from (4.5) that

N∑

n=0

A2
nEn =

N∑

n=0

1
En

{∫ a

0

∫ a

0
f(v)f(t)Yn(v)Yn(t) dvdt (4.10)

+ 2
f ′(a)
α2

∫ a

0
f(v)Yn(v)Y ′

n(a) dv + 2
f ′(0)
α1

∫ a

0
f(v)Yn(v)Y ′

n(0) dv

+
(

f ′(a)
α2

Y ′
n(a)

)2

+
(

f ′(0)
α1

Y ′
n(0)

)2

+ 2
f ′(0)f ′(a)

α1α2
Y ′

n(0)Y ′
n(a)

}
.

On interchanging the orders of summation and integration, letting N →∞ and then using

Lemma 1, it is found that

∞∑

n=0

A2
nEn =

∫ a

0
f(v)

∫ ∞

−∞
F(t) [δ(v − t) + δ(−v − t) + δ(y + t− 2a)] dtdv (4.11)

+ 2
f ′(a)
α2

∫ a

0
f(v)

∞∑

n=0

Yn(v)Y ′
n(a)

En
dv + 2

f ′(0)
α1

∫ a

0
f(v)

∞∑

n=0

Yn(v)Y ′
n(0)

En
dv

+
f ′(0)f ′(a)

α1α2

∞∑

n=0

Y ′
n(0)Y ′

n(a)
En

+
(

f ′(a)
α2

)2 ∞∑

n=0

[Y ′
n(a)]2

En
+

(
f ′(0)
α1

)2 ∞∑

n=0

[Y ′
n(0)]2

En

where F(t) is defined in (3.33). On rearranging the first sum on the right hand side of (4.11)

using (2.7) and the second by noting that Y ′
n(0) = −Q0, these terms are seen, from (3.1)and
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(3.2), to be zero . The remaining sums are given in (B.1) and (B.2) respectively. It follows

that the above expression reduces to (4.9) which confirms that this set of eigenfunctions is

indeed complete.

Hence, for this particular example, it is known that the eigenfunctions are complete but

linearly dependent and the eigenfunction expansion (3.27), with An given by (4.5), converges

point-wise. As discussed above, the fact that the eigenfunctions are linearly dependent is

highly significant to this class of physical problem. Suppose that the waveguide under

consideration is semi-infinite, lying in the region x ≥ 0, see figure 1. Suppose further that

the waveguide is closed by a rigid surface occupying the region x = 0, 0 ≤ y ≤ a and

that the fundamental fluid-membrane coupled wave is incident, in the negative x direction,

through the waveguide towards x = 0. It is immediately apparent that a possible form for

the fluid velocity potential is

φ(x, y) = Y0(y)
(
eis0x + e−is0x

)
(4.12)

from which it follows that

φx(x, y) = is0Y0(y)
(
eis0x − e−is0x

)
(4.13)

where the subscript indicates differentiation with respect to x. This form satisfies all the

physical conditions of the problem except the membrane edge conditions. The usual edge

conditions enforce either zero membrane displacement or zero gradient at the points (0, 0)

and (0, a) respectively. Thus, two are required (one for each membrane), consistent with

the fact that K0 + Ka = 2 for this problem. These conditions can be accommodated by

adding a linear combination of the sums (3.1) and (3.2) (both with q = 0) to (4.13). Thus,

the velocity φx(x, y) can be written as

φx(x, y) = is0Y0(y)
(
eis0x − e−is0x

)
+ η

∞∑

n=0

Yn(y)Y ′
n(a)eisnx

α2En
+ ζ

∞∑

n=0

Yn(y)eisnx

En
. (4.14)

where η where ζ are arbitrary constants. Note that to obtain this expression (3.1), with

q = 0, has been rearranged using (2.7). On integrating (4.14) with respect to x, it is found

that

φ(x, y) = Y0(y)
(
eis0x + e−is0x

)− iη

∞∑

n=0

Yn(y)Y ′
n(a)eisnx

α2snEn
− iζ

∞∑

n=0

Yn(y)eisnx

snEn
. (4.15)

The unique solution is obtained once the constants η and ζ are determined via the appli-

cation of the edge conditions.
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Figure 1: Duct geometry for Examples 1 and 2.

4.2 Example 2

The second example, is the case in which the upper duct surface comprises an elastic

plate whilst the lower surface is again a membrane. Thus, P0(s) = −s2 + µ2, Q0 = −α,

Pa(s) = s4 − ν4 and Qa = −β where the definitions of the constants ν and β are given

(as k0 and ν respectively) by Andronov and Belinsky (1990). In this case the polynomials

τ(s) and λ(s), of the dispersion relation, are of higher order than those for Example 1 and

complex roots do exist. Again, (4.3) holds but with

(Ym, Ym) =
∫ a

0
YmYn dy +

1
β

(
Y ′′′

m (a)Y ′
n(a) + Y ′

m(a)Y ′′′
n (a)

)
(4.16)

+
2
β

Y ′
m(a)Y ′

n(a) +
1
α

Y ′
m(0)Y ′

n(0).

As for Example 1, various forms of this orthogonality property have appeared in the litera-

ture, for example Andronov and Belinsky (1990), Lawrie and Abrahams (2002), Evans and

Porter (2003) and Linton and Chung (2003). Expression (4.16) is not, however, a true inner

product since, although the norm can be defined in the same way as for Example 1, that is

‖f‖2 = (f, f), it cannot be proved, in general, that ‖f‖2 ≥ 0. It is nevertheless possible to

prove that this set of eigenfunctions is complete, for example, for the class of three times

differentiable functions f(y) for which f ′′′(a) = 0. Despite the fact that, for the general

case, completeness cannot be proved using the method outlined above, the eigenfunctions

for this example satisfy all the other properties discussed in the article.

Suppose that, as for Example 1, the waveguide under consideration is semi-infinite,

lying in the region x ≥ 0 (see figure 1), and that that the waveguide is closed by a end

plate occupying the region x = 0, 0 ≤ y ≤ a. In this case, however, forcing is introduced

as a specified velocity distribution on the end plate rather than as an incident wave. That

18



is, φx(0, y) = f(y), 0 ≤ y ≤ a where f(y) is suitably smooth, for example f(y) = y2. (Note

that, for the purposes of this example, f(y) 6= Yn(y), n = 0, 1, 2, . . . since this corresponds

to a fluid coupled structural wave for which the problem is tractable via Fourier integrals.)

Three edges conditions are required. Without loss of generality, it will be assumed that

φy(0, 0) = φy(0, a) = φxy(0, a) = 0 (4.17)

which implies zero displacement at both the plate and membrane edges together with zero

gradient for the plate. It is convenient to express the normal velocity as an eigenfunction

expansion, thus

φx(x, y) =
∞∑

n=0

AnYn(y)eisnx. (4.18)

It follows from (4.5) and (4.16) that

AnEn =
∫ a

0
Yn(y)φx(0, y) dy +

Y ′′′
n (a)
β

φxy(0, a) +
Y ′

n(a)
β

φxyyy(0, a) (4.19)

+
2Y ′

n(a)
β

φxy(0, a) +
Y ′

n(0)
α

φxy(0, 0).

On using the condition φxy(0, a) = 0 and denoting η = φxyyy(0, a), ζ = φxy(0, 0), it is found

that

AnEn = Bn +
η

β
Y ′

n(a) +
ζ

α
Y ′

n(0). (4.20)

where

Bn =
∫ a

0
f(y)Yn(y) dy. (4.21)

It follows that the velocity potential is given by

φ(x, y) = −i

∞∑

n=0

BnYn(y)eisnx

snEn
(4.22)

− iη

β

∞∑

n=0

Yn(y)Y ′
n(a)eisnx

snEn
− iζ

∞∑

n=0

Yn(y)eisnx

snEn

where use has been made of the fact that, for this example, Y ′
n(0) = −Q0 = α. The

solution contains two arbitrary constants and, since one edge condition has already been

applied, there are two remaining edge conditions by which to determine them. Note that,

for this example, Ka + K0 = 3 which, as expected, is the same as the total number of edge

conditions. It is clear that, even though completeness has not been established for this set

of eigenfunctions, the velocity potential has been expressed as an eigenfunction expansion

which, according to Theorem 2, converges point-wise to the solution.
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5 Concluding remarks

In this article a class of expansion involving the eigenfunctions described by equations (2.6)–

(2.8) has been investigated. Attention has been restricted (see conditions i), ii) and iii) of

section 2) to the cases Q0(a) = 0, P0(a) 6= 0 with |Pa(0)(s)/Qa(0)(s)| = O(s2(Ka(0)−Ja(0))) as

|s| → ∞ or |Pp(s)/Qp(s)| = O(s2(Kp−Jp)) as |s| → ∞ for both p = a and p = 0, where

Kp−Jp > 0 is a positive integer. This restriction ensures that the eigenfunction expansions

discussed herein are a generalisation of the Fourier cosine series in that the eigenvalues

are given, to leading order by, γn+Ka+K0 ∼ inπ/a as n → ∞, see (2.20). Many real

physical boundary conditions, for example those describing membranes and elastic plates,

do in fact satisfy this constraint. It has been proved that the eigenfunctions are linearly

dependent and that the number of “excess” eigenfunctions is the same as the number of

edge conditions to be applied for a given problem. Most significantly, it has been proved

that the eigenfunction expansions given by (3.27) converge point-wise. Completeness of

the eigenfunctions has been proved for one specific example and has been discussed for a

second case. It remains, however, to prove completeness for the general case.

A The orthogonality relation

The eigensystem for the functions Yn(y) is specified in equations (2.6)–(2.8). In the analysis

that follows it is convenient to use the function Y (s, y) defined by (3.4). Recall that

Yn(y) = Y (sn, y) where sn, n = 0, 1, 2, . . . are the roots to (2.10), that is K(s) = 0 where

K(s) = Pa(s)Y ′(s, a) + Qa(s)Y (s, a). (A.1)

Note that the prime refers to differentiation with respect to y. When differentiation with

respect to s is required this will be written explicitly.

From (2.7)–(2.8) it is clear that

[
{Pa(sn)Y ′

n(y) + Qa(sn)Yn(y)}{P0(sm)Y ′
m(y) + Q0(sm)Ym(y)} (A.2)

−{Pa(sm)Y ′
m(y) + Qa(sm)Ym(y)}{P0(sn)Y ′

n(y) + Q0(sn)Yn(y)}
]a

0
= 0.

On expanding and rearranging this it is found that

[
tmnYn(y)Y ′

m(y)− tnmYm(y)Y ′
n(y) + (γ2

m − γ2
n){pmnY ′

m(y)Y ′
n(y) + qmnYm(y)Yn(y)}

]a

0
= 0

(A.3)
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where tmn, pmn and qmn are defined in equations (2.12)–(2.14). It is now an easy matter

to write the first term of (A.3) in integral form to obtain

tmn

∫ a

0

(
Y ′

n(y)Y ′
m(y) + Yn(y)Y ′′

m(y)
)

dy − tnm

[
Ym(y)Y ′

n(y)
]a

0
(A.4)

+(γ2
m − γ2

n)
[
pmnY ′

m(y)Y ′
n(y) + qmnYm(y)Yn(y)

]a

0
= 0

Then, on integrating the first term of the integral by parts, it is found that

(γ2
m − γ2

n)
{

tmn

∫ a

0
Ym(y)Yn(y) dy + rmn

[
Ym(y)Y ′

n(y)
]a

0
(A.5)

+
[
pmnY ′

m(y)Y ′
n(y) + qmnYm(y)Yn(y)

]a

0

}
= 0

where rmn is given by (2.15). Thus, the expression within the parentheses is equal to zero

provided m 6= n. It remains to consider the case m = n. On dividing (A.2) and (A.5) by

s2
m − s2

n and equating the resulting expressions, it is found that

tnn

∫ a

0
Y 2

n dy + pnn

(
[Y ′

n(a)]2 − [Y ′
n(0)]2

)
+ qnn

(
Y 2

n (a)− Y 2
n (0)

)
(A.6)

+ rnn

(
Yn(a)Y ′

n(a)− Yn(0)Y ′
n(0)

)

=
[
{Pa(sn)Y ′

n(y) + Qa(sn)Yn(y)} lim
s→sn

P0(s)Y ′(s, y) + Q0(s)Y (s, y)
(s2 − s2

n)

− lim
s→sn

Pa(s)Y ′(s, y) + Qa(s)Y (s, y)
(s2 − s2

n)
{P0(sn)Y ′

n(y) + Q0(sn)Yn(y)}
]a

0

.

On using L’Hôpital’s rule to evaluate the limit on the right hand side and inserting the

values y = a, 0, expression (A.6) reduces to

tnn

∫ a

0
Y 2

n dy + pnn

(
[Y ′

n(a)]2 − [Y ′
n(0)]2

)
+ qnn

(
Y 2

n (a)− Y 2
n (0)

)
(A.7)

+ rnn

(
Yn(a)Y ′

n(a)− Yn(0)Y ′
n(0)

)

= −{P0(sn)Y ′
n(a) + Q0(sn)Yn(a)}

2sn

d

ds
K(s)

∣∣∣
s=sn

= tnnEn.

Hence, (A.2) may be written as

tmn

∫ a

0
YmYn dy + pmn

(
Y ′

m(a)Y ′
n(a)− Y ′

m(0)Y ′
n(0)

)
(A.8)

+ qmn (Ym(a)Yn(a)− Ym(0)Yn(0))

+ rmn

(
Ym(a)Y ′

n(a)− Ym(0)Y ′
n(0)

)
= δmntmnEn.

Expression (2.11) follows on interchanging m and n in (A.8) and adding the result to (A.8).
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B Evaluation of some relevant sums

The following sums are used in the discussion

∞∑

n=0

Y ′
n(y)Y ′

n(a)γ2q
n

En
=





0, 0 ≤ y < a

C, y = a
(B.1)

and ∞∑

n=0

[Y ′
n(0)]2γ2r

n

En
= D (B.2)

where q = 0, 1, 2, . . . Ka − Ja − 1, r = 0, 1, 2, . . .K0 − J0 − 1 and

C = lim
|s|→∞

∣∣∣∣
Qa(s)s2q+2

Pa(s)

∣∣∣∣ and D = lim
|s|→∞

∣∣∣∣
Q0(s)s2r+2

P0(s)

∣∣∣∣ .

These sums may be evaluated in the same way as those demonstrated in section 3. The

appropriate integrals are:

I6(y) =
1

2πi

∫ ∞

−∞

sY ′(s, y)Qa(s)γ2q

K(s)
ds, 0 ≤ y ≤ a (B.3)

and

I7(y) =
1

2πi

∫ ∞

−∞

s[Y ′(s, 0)]2Pa(s)γ2r

K(s)Y (s, a)
ds. (B.4)
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Errata:

2
∞∑

n=0

dnP0(dn) sinh[δn(y − a)] cosh[δn(v − a)]
(d2

n − 1) sinh(δna) d
dsY (s, a)|s=dn

= −2H(−v − y) +
P0(1)(a− y)

a{P0(1)− aQ0(1)}

− 2
π

∞∑

n=1

1
n

sin(
nπy

a
) cos(

nπv

a
) (3.24);

∞∑

n=0

Yn(y)Zn(v)
En

= H(v − y)−H(−v − y) + H(v + y − 2a)−
(
1− y

a

)

+
Q0(1)P0(1){P0(1)− yQ0(1)}

K(1){P0(1)− aQ0(1)} +
P0(1)(a− y)

a{P0(1)− aQ0(1)} (3.26).
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