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Abstract

The Wiener-Hopf technique is a powerful aid for solving a wide range of problems in
mathematical physics. The key step in its application is the factorization of the Wiener-
Hopf kernel into the product of two functions which have different regions of analyticity.
The traditional approach to obtaining these factors gives formulae which are not particularly
easy to compute. In this article a novel approach is used to derive an elegant form for the
product factors of a specific class of Wiener-Hopf kernels. The method utilizes the known
solution to a difference equation and the main advantage of this approach is that, without
recourse to the Cauchy integral, the product factors are expressed in terms of simple, finite
range integrals which are easy to compute.
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1 Introduction

The Wiener-Hopf technique is a powerful analytical tool for solving a wide range of problems
in physics and engineering. Applications include the analysis of crystal growth (Kuiken, 1985),
scattering of acoustic or water waves (Leppington, 1968), viscous and inviscid fluid flows (Lewis
and Carrier, 1949; Davis, 1990), crack propagation in elastic media (Abrahams and Wickham,
1992), and radiation and neutron transport problems. The latter topic was the original appli-
cation for which the Wiener-Hopf technique was devised (Wiener & Hopf, 1931). This method
can be applied to all linear boundary value problems defined in an infinite strip and which
have two-part boundary conditions on one or both of the infinite faces. It has successfully been
employed on hyperbolic, elliptic and parabolic governing equations.

The reader is referred to the book by Noble (1958) for full details of the solution method and
several examples. This paper will concentrate on an examination of the key-step of the Wiener-
Hopf procedure, that is, the factorization of the Wiener-Hopf kernel. The kernel, Q(α) say, is
a function of a complex variable, α, and in general has singularities (both poles and branch
cuts) and zeros in the whole of the complex α-plane except for a finite width strip containing
the line =(α) = 0. The strip of regularity is called D. The precise form of Q(α) is determined
by the governing equation and boundary conditions for a given problem. In order to solve any
Wiener-Hopf problem it is necessary to decompose the kernel into a product of two functions,
one regular and zero free in the upper half of the complex α-plane including D, labelled D+,
and the other regular and zero free in the lower half plane including D, namely D−. Thus,

Q(α) = Q+(α)Q−(α), α ∈ D, (1.1)

where Q±(α) is regular in D±. It is a simple matter to obtain a sum factorization of any function
by application of Cauchy’s theorem (Noble, 1958 pp 13). Hence, taking the sum factorization
of the logarithm of Q(α), and then obtaining the exponential of this term gives

Q±(α) = exp
{±1

2πi

∫ ∞

−∞
log[Q(ζ)]

dζ

ζ − α

}
, =(α)

>
< =(ζ), (1.2)

where the symmetry of these integral definitions implies that

Q+(α) = Q−(−α) (1.3)

if Q(α) is an even function. The form of this expression has several difficulties, highlighted
in section 3, which makes its computation both slow and cumbersome. A slow numerical
algorithm is highly undesirable because the final solution to any physical problem will inevitably
be expressed as an infinite integral of Fourier type, the integrand of which contains one of the
product factors. Examples of such integrals are shown later in this article. The primary aim
of this paper (section 4) is to offer a new direct approach to factorizing Wiener-Hopf kernels
of a specified class. This not only avoids utilizing the Cauchy integral, (1.2), but results in a
computationally simple, and highly efficient form for the product factors. In section 5 numerical
timings for both the Cauchy integral and the alternative representations are presented. The
Appendix verifies the results of section 4, employing a derivation based on standard but little
used integral techniques.

2 The specific class of Wiener-Hopf kernels

Perhaps the major areas of mathematical physics that have exploited the Wiener-Hopf technique
are those involved with the propagation or diffraction of time-harmonic waves. These include the
subjects of electromagnetism, acoustics and elastodynamics, which, for steady-state oscillations
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yield the reduced wave equation (often referred to as Helmholtz’ equation). The class of Wiener-
Hopf kernels, Q(α), to be examined herein results from, amongst other problems, the following
boundary value system:

∂2φ

∂x2
+

∂2φ

∂y2
+ k2φ = 0, −∞ < x < ∞, y > 0, (2.1)

A
∂φ

∂y
+ Bφ = 0, y = 0, x < 0, (2.2)

C
∂φ

∂y
+ Dφ = 0, y = 0, x > 0, (2.3)

where φ(x, y) is a physical dependent variable such as a pressure or stress function etc., k is a
constant wavenumber and A,B,C,D are differential operators of the form

A =
Na∑

n=0

an
∂2n

∂x2n
, . . . ,D =

Nb∑

n=0

dn
∂2n

∂x2n
. (2.4)

Note that Na,. . . ,Nd are any non-negative integers, an,. . . ,dn are arbitrary coefficients depen-
dent on the physics, and the presence of only even derivatives in x is a requirement on most
boundary conditions in wave theory.

Omitting all details, it can easily be shown that Q(α) for the boundary value problem
(2.1)–(2.3) may be cast into the form

Q(α) = C

∏N
j=1 γ(α)− ik sin(Xj)∏M
j=1 γ(α)− ik sin(Yj)

(2.5)

where
γ(α) = (α2 − k2)1/2, (2.6)

C is a constant which will henceforth be omitted for brevity, N and M are odd integers related to
the derivative orders Na,. . . ,Nd, and Xj and Yj are complex constants related to the coefficients
an,. . . ,dn. The double valued complex function γ(α) has branch points at ±k and its Riemann
surface is chosen such that

γ(0) = −ik. (2.7)

In scattering problems it is usual, initially, to allow k to have a small positive imaginary part
in order to give a strip D of width 2=(k). Thus, the branch cuts emanating from +k, −k
go off infinity within D+, D− respectively, and without loss of generality are here taken along
+k → +∞ + =(k) and −k → −∞ − =(k). Finally, for reasons to be made clear later, and
without loss of generality, Xj and Yj are chosen to lie within

−π < <(Xj),<(Yj) ≤ π/2, =(Xj),=(Yj) ≥ 0, (2.8)

or
0 ≤ <(Xj),<(Yj) < π/2, =(Xj),=(Yj) < 0. (2.9)

Note that γ(α)− ik sin(Xj) has a zero in the Riemann surface defined by (2.7) only when (for
k real) −π < <(Xj) ≤ 0,=(Xj) > 0, or <(Xj) = 0,=(Xj) < 0.

A specific example from the class of boundary value problems, defined by (2.1)–(2.4), is an
acoustic fluid lying above a semi-infinite elastic plate set in a semi-infinite rigid baffle. Then,
from Cannell (1975) the kernel is given by

Q(α) =
∏5

j=1 γ(α)− ik sin(Xj)
γ(α)

(2.10)
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where the sin(Xj) satisfy

sin5(Xj)− 2 sin3(Xj)− (1− µ4/k4) sin(Xj) + iτ/k5 = 0 (2.11)

in which µ and τ are parameters dependent on the plate and fluid variables.
It can be noted that there is one root, X1 say, which is purely negative imaginary, one

root lies in region (2.9), and the other three roots lie respectively in the strips −π < <(X) ≤
−π/2,−π/2 < <(X) ≤ 0, 0 < <(X) ≤ π/2, =(X) > 0. Also, Y1 = 0 so that γ(α) appears in
the denominator on its own. This term is trivial to factorize and so in what follows only the
case |Xj | 6= 0 will be examined.

The product factor which is regular in D+ for the general kernel written in (2.5) is

Q+(α) =
∏N

j=1 K+(α, Xj)∏M
j=1 K+(α, Yj)

(2.12)

where the Cauchy’s integral formula gives

K+(α, X) = exp

{
1

2πi
lim

R→∞

∫ R

−R
log[γ(ζ)− ik sin(X)]

dζ

ζ − α

}
, =(α) > =(ζ). (2.13)

The main thrust of this article is the novel derivation of an expression for K+(α, X) in terms of
simple, finite range integrals. However, to emphasize the need for such representation, the the
next section is concerned with describing the difficulties commonly encountered with numerical
evaluation of (2.13). Note that, as =(k) → 0, the integration path passes above the branch cut
lying along −k to −∞ and below the cut along k to ∞. The path runs below the pole at α but
logarithmic branch points can lie in any part of the complex α-plane. Note, finally, that the
definition of the product factorization (2.13) implies

K+(α, X) = K−(−α,X). (2.14)

3 Numerical evaluation of the Cauchy integral representation

This section will concentrate on the numerical evaluation of the integral representation of
K+(α, X) written in (2.13). There are several difficulties associated with this expression; these
obstacles are discussed and practical procedures for overcoming them are outlined. First, by
inspection of (2.13), it is clear that the integral converges by virtue of cancellation in the inte-
grand as ζ → ±∞. This situation can be improved upon by changing ζ to −ζ on the negative
part of the integration range and combining both half-range integrals. Thus, after allowing
R →∞

K+(α, X) = exp {J(α, X)} , =(α) > =(ζ), (3.1)

where
J(α, X) =

α

πi

∫ ∞

0
log[γ(ζ)− ik sin(X)]

dζ

ζ2 − α2
. (3.2)

This is now a convergent expression but it can be improved slightly by removing the logarithmic
behaviour for large ζ:

J(α, X) =
α

πi

∫ 1

0
log[γ(ζ)− ik sin(X)]

dζ

ζ2 − α2
+

α

πi

∫ ∞

1
log[(γ(ζ)− ik sin(X))/ζ]

dζ

ζ2 − α2

+
α

4πi
Φ(α2, 2, .5), =(α) > =(ζ), (3.3)
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where Φ(z, s, a) is the Lerch transcendent, which is related to the Riemann Zeta function, and
is defined as

Φ(z, s, a) =
∞∑

i=0

zi

(a + i)s
, (3.4)

see Gradshteyn & Ryzhik (1965), section (9.55). The second integral in (3.3) can now be turned
into a finite range expression by recourse to the substitution ζ → 1/ζ and so J(α, X) can now
be computed provided α or the logarithmic branch point is not near the integration path.

This leads to the second difficulty, which is to compute J(α, X) when α lies on or near the
real line. In practice, Q+(α) (and hence K+(α, X)) is almost always required along the whole
of the real line, and so this case must be tackled. As α lies in the upper half plane it is clear
that the integration path in ζ is indented below the point ζ = α. Without detail, it can be
shown that the singularities can be removed by rewriting J(α,X) as

J(α, X) =
α

πi

∫ 1

0
log

[
γ(ζ)− ik sin(X)
β(α)− ik sin(X)

]
dζ

ζ2 − α2

+
α

πi

∫ ∞

1
log

[
(γ(ζ)− ik sin(X))εα
(β(α)− ik sin(X))ζ

]
dζ

ζ2 − α2
+

α

4πi
Φ(α2, 2, .5)

− 1
2πi

log(εα) log
(

1 + α

1− α

)
+

1
2

log(β(α)− ik sin(X)), =(α) > =(ζ), (3.5)

where ε = sgn{<(α)}. Also

β(α) = γ(α), |<(α)| ≤ k, (3.6)
β(α) = γ̄(εα), |<(α)| > k, (3.7)

in which γ̄(α) is a complementary function to γ(α) with a branch-cut lying between ±k, and
γ̄(α) → α as α →∞ in the whole of the complex plane.

Expressions (3.3) and (3.5) can be combined numerically to allow J(α, X) to be computed
for all α in the upper half plane, as long as γ(α) − ik sin(X) is not zero near the contour of
integration. When X takes a complex value (see the constraints (2.8), (2.9)) near to, or on, any
of the lines

<(X) = −π,=(X) > 0; <(X) = 0,=(X) < 0; <(X) = 0,−π < =(X) < 0 (3.8)

then this zero will lie close to the path of integration and so must be dealt with. It is straight-
forward to show that the logarithmic singularity thus appearing in (3.3) can be removed by
writing K+(α, X) in the form

K+(α, X) = i(α + cosX) exp
{

1
2πi

∫ ∞

−∞
log

[
γ(ζ)− ik sin(X)

ζ2 − cos2(X)

]
dζ

ζ − α

}
, =(α) > =(ζ). (3.9)

The explicit zero at α = − cos(X) lies in the lower half plane, as required, as long as X does
not take a value within the quadrant −π/2 < <(X) < 0,=(X) > 0. This is consistent with
only choosing this factorization representation when X is close to one of the lines defined in
(3.8). Finally, in a similar fashion to that demonstrated above, a better form for K+(α,X) in
this case is

K+(α,X) = i(α + cosX) exp
{

α

πi

∫ 1

0
log

[
γ(ζ)− ik sin(X)

ζ2 − cos2(X)

]
dζ

ζ2 − α2
(3.10)

+
α

πi

∫ ∞

1
log

[
(γ(ζ)− ik sin(X))ζ

ζ2 − cos2(X)

]
dζ

ζ2 − α2
− α

4πi
Φ(α2, 2, .5)

}
,=(α) > =(ζ).
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It has now been shown that the Cauchy integral representation for the product factorization
(2.13) must be modified to deal with the various computational difficulties, namely bad con-
vergence and singularities near to the integration path. A case not explicitly dealt with here,
but one which needs to be addressed in many problems, is when both α and cos(X) lie close to
or on the real line. This requires a combination of the techniques used in the representations
(3.5) and (3.10). In the following section an elegant form for K+(α,X) will be derived which
will be shown to hold uniformly for α everywhere in the upper half plane and for all X in the
region (2.8) and (2.9). It will also be shown that the new representation is a great deal faster
to compute.

4 New representation of the kernel factorization

In this section a novel procedure is examined by which the product factor K+(α, X) can be
obtained in terms of simple finite range integrals. This new procedure hinges on the use of
functional difference equations and the factorization is achieved without recourse to the Cauchy
integral. All Wiener-Hopf kernels of the type defined by (2.5) may be factorized in this way
and the method may give insight into factorizing other kernels.

It is convenient to introduce the transformation

α = −k sin s (4.1)

where the upper (lower) half of the α-plane is chosen to map to the strip −3π/2 ≤ <(s) ≤ −π/2,
=(s) > 0 (=(s) < 0), and

γ(−k sin s) = ik cos s. (4.2)

Using these substitutions the kernel may be written as

K(−k sin s,X) = K+(−k sin s,X)K−(−k sin s,X) = ik{cos(s)− sin(X)}. (4.3)

This may be formulated as a difference equation by writing

K+(−k sin(s), X)K−(−k sin(s), X)
K+(−k sin(s + π), X)K−(−k sin(s + π), X)

=
cos(s)− sin(X)
cos(s) + sin(X)

. (4.4)

Note that, in the complex α-plane the function K(α, X) is an even function of α and thus
(2.14) applies. However, in the complex s-plane it is found that K+(−k sin(s + π), X) 6=
K−(−k sin(s), X). The reason for this becomes apparent when one considers exactly how the
two branches of the complex function γ(α) map into the complex s-plane (see section 2). That
defined by γ(0) = −ik maps into the strip −3π/2 < <(s) < −π/2, −∞ < =(s) < ∞ whilst the
alternative surface, defined by γ(0) = ik, maps into a strip of width π adjacent to this. The
full complex function γ(α) (that is both Riemann surfaces) maps into a strip of the complex
s-plane of width 2π. Thus, it is reasonable to seek an expression for K+(−k sin(s), X) in terms
of the function f(s) which satisfies

f(s + 2π)
f(s)

=
cos(s)− sin(X)
cos(s) + sin(X)

. (4.5)

The solution to this difference equation is well documented (see Maliuzhinets, 1958) and can
be written as

f(s) =
1

M(s−X + π)M(s + X)
(4.6)

where M(s) has the integral representation

M(s) = exp
{

1
4π

∫ s

0

2u− π sinu

cosu
du

}
. (4.7)
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Note that the function M(s) is a special case of the Maliuzhinets function, Mβ(s), as defined
by Abrahams & Lawrie (1994). This function arises in the solution of the wave equation in a
wedge of angle 2β with Robins or higher order boundary conditions. Hence, for Wiener-Hopf
problems, which have planar boundaries, β = π/2 and so M(s) = Mπ/2(s). The Maliuzhinets’
function satisfies the symmetry property

Mβ(−s) = Mβ(s) (4.8)

and the following difference equation:

Mβ(s + π/2)Mβ(s− π/2) = M2
β(π/2) cos(

πs

4β
). (4.9)

Expression (4.6) is easily justified by direct substitution of f(s) into (4.5) making use of (4.9).
It is now possible to write (4.4) as

K+(−k sin(s), X)K−(−k sin(s), X)
K+(−k sin(s + π), X)K−(−k sin(s + π), X)

=
f(s + 2π)
f(s + π)

f(s + π)
f(s)

. (4.10)

Note the the quantity f(s + π) is introduced both in the numerator and denominator of the
right hand side in order to imitate the difference in argument of both the functions of the left
hand side. The equation can now be ‘separated’ into two independent difference equations.
Without loss of generality choose

K+(−k sin(s), X)
K+(−k sin(s + π), X)

=
f(s + π)

f(s)
, (4.11)

K−(−k sin(s), X)
K−(−k sin(s + π), X)

=
f(s + 2π)
f(s + π)

. (4.12)

This choice of separation is entirely arbitrary; should the right hand sides of (4.11) and (4.12)
be interchanged then the following steps would produce the factorization of [K(−k sin(s), X)]−1

from which, of course, the desired factorization is easily deduced. Note that it is not necessary,
indeed undesirable, to introduce any eigensolutions when separating the difference equations.
Such eigensolutions must satisfy e(s + π) = e(s), which would introduce spurious zeros and/or
poles into the product factors K±(−k sin(s), X). Equations (4.11) and (4.12) are trivial to solve
in terms of f(s):

K+(−k sin(s), X) =
E1(s)
f(s)

(4.13)

K−(−k sin(s), X) =
E2(s)

f(s + π)
(4.14)

where E1(s), E2(s) are 2π-periodic eigensolutions. The functions E1(s) and E2(s) are chosen

such that K±(−k sin(s), X) have no zeros or poles in −3π/2 < <(s) < −π/2, =(s)
>
< 0.

Referring to Abrahams & Lawrie (1994), the function f(s) has poles at s = X+π/2+2mπ, X−
5π/2 − 2mπ, −X + 3π/2 + 2mπ, −X − 3π/2 − 2mπ, m = 0, 1, 2, . . ., and zeros given by
s = X +3π/2+2mπ, X− 7π/2− 2mπ, −X +5π/2+2mπ, −X− 5π/2− 2mπ, m = 0, 1, 2, . . ..
For X in the regions described by (2.8) and (2.9), it is found, on considering each family of
zeros and poles, that f(s) is in fact analytic and non-zero in the region −3π/2 < <(s) ≤ −π/2,
=(s) > 0. Thus, E1(s) must be a constant, say c1. Similarly, it can be shown that

E2(s) = c2
cos(s)− sin(X)
cos(s) + sin(X)

, (4.15)
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where c2 is constant. It remains only to select c1 and c2, which is conveniently achieved by
enforcing conditions (2.14) at α = 0, that is, at s = −π, and (4.3) at s = −π/2−X. It is found
that c1 = c2 =

√
2ke−iπ/4M−2(π/2). Hence, the factorization is complete:

K+(−k sin s,X) =
√

2ke−iπ/4M−2(π/2)M(s−X + π)M(s + X) (4.16)

this is valid for all s in the region −3π/2 ≤ <(s) ≤ −π/2, =(s) > 0 as long as X takes a
value in the regions defined in (2.8) or 0 < <(X) < π/2, =(X) < 0. For =(X) < 0 and
<(X) = 0 there is a zero in K+(−k sin s,X) situated on the line <(s) = −3π/2, =(s) > 0 and
so the representation (4.16) will not be valid at this point due to the divergence of the function
M(s + X). This can be overcome by analytically continuing (4.16) into another region of the
s-plane by application of (4.9). Thus, K+(−k sin s,X) may be rewritten as

K+(−k sin s,X) =
√

2ke−iπ/4 cos
1
2
(s + X + π/2)

M(s−X + π)
M(s + X + π)

(4.17)

which can easily be shown to be well defined for all s lying in −2π ≤ <(s) ≤ −π/2, =(s) > 0 if
X satisfies (2.8) or (2.9). Note that successive applications of (4.9) will give a continuation of
the product factorization into any region of the complex s-plane desired. For example,

K+(−k sin s,X) =
√

2ke−iπ/4M2(π/2)
cos 1

2(s−X + π/2) cos 1
2(s + X − π/2)

M(s−X)M(s + X − π)
(4.18)

can be employed in the region −π/2 ≤ <(s) < π/2, =(s) > 0 or π/2 ≤ <(s) < 3π/2, =(s) < 0.
This result has application beyond the scope of this article (see Abrahams & Lawrie, 1994).

Finally, it is illustrative to consider the elastic plate kernel defined by (2.10). Comparing
this with (2.10) it is clear that M = 1 and Y1 = 0 so that the denominator is simply γ(α) and
this must be factorized to satisfy (1.3). Then using (2.12) and (4.16) it can be shown that

Q+(−k sin s) =
4k2

M10(π/2) sin 1
2(s− π/2)

5∏

j=1

M(s−Xj + π)M(s + Xj) (4.19)

where M(s) is given by (4.7). This was, in fact, the form of the factorization which produced
the fastest result when computing the integral (5.1) in section 5. It should be noted that,
whilst the above approach has not previously been documented, similar finite range integral
representations for kernels of this class have been derived by Weinstein (1969) using a method
similar to that outlined in the appendix.

5 Numerical timings and discussion

It is clear that the representation (4.16) (or 4.17) for K+(−k sin s,X) has a significantly simpler
form than that given in (3.1) using (3.3), (3.5) or (3.10). To demonstrate that it is also very much
more efficient for computational purposes, a few timings are given for various calculations with
different values of X. As mentioned previously, Q+(α), and hence every K+(α,X), is usually
required along the real line (passing above the left hand branch cut and below the right hand
cut) as well as at a number of discrete points in the upper half plane. For example, figure 2 gives
a plot of |K+(α,−π/4 + i)| along the real line between −10 < α < 10 for k = 1. To compute
this curve on a 90MHz Pentium PC using the Mathematica graphing call ‘ParametricPlot’,
expression (3.5) took 441.6 secs whilst (4.16) took 41.1 secs. A similar plot for X = −i was
completed in 389.1 secs using the Cauchy representation suitably modified, and in 18.1 secs
using (4.17).
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A physically relevant example to indicate the advantage of the new representation is to
compute the integral ∫ ∞

−∞
exp {iζx0 − γ(ζ)y0}

Q+(ζ)(ζ − α)
dζ (5.1)

where Q+(α) is a product factorization of the elastic plate kernel (2.10) and α takes any value in
the upper half plane. Note that the contour is indented above a simple pole arising from a zero
of Q+(α) on the negative real line. This integral is typical of the type arising either as the final
solution for scattering problems forced by a plane wave (see, for example Noble 1958, equation
(2.84a)), or as the inner integral when a delta function forcing (at position (x0, y0)) is applied.
Choosing, arbitrarily, x0 = y0 = 1, α = 1 + i and the plate constants k = 1, τ = 2, µ = .5 it is
found that the Mathematica routine ‘NIntegrate’ computes (5.1) to be −0.13985− 0.472107i in
just 3 minutes using (4.16) (in the combined form (4.19)), and in excess of 50 minutes employing
the method described in section 3. As a matter of interest, the calculation of (5.1) using the
Cauchy integral representation on a 386SX personal computer takes approximately 13 hours!

Insert figure 2 about here

To conclude, this paper has offered a simple, convenient and efficient form, (4.16), for the
product factors of the general Wiener-Hopf kernel class (2.12). Great saving in computation time
has been achieved, and this will be further compounded in problems where there are double
integrals (both of infinite range) containing Q±(α). The new representation of the kernel
factorization allows a numerical experiment, over several parameter ranges, to be completed
quickly and easily. In the case of the thin elastic plate, for example, the outgoing unattenuated
plate wave coefficient could conveniently be plotted as a function of wavenumber, plate density,
fluid loading etc. To obtain the same set of results using the Cauchy integral approach would
require computation times of the order of weeks.

The difference equation approach to factorizing Wiener-Hopf kernels can be extended to
other classes of kernel provided that they contain a branch point. However, it should be
recoginzed that such an approach will require the derivation of the solution to a difference
equation; in this case that was known apriori.

A Appendix

This appendix outlines an alternative, and more standard, approach by which expression (4.19)
can be obtained. As before, it is convenient to introduce the transformation (4.1) and (4.2),
thus (2.13) can be expressed as

K+(−k sin s,X) = exp
{

1
2πi

I(s)
}

, =(α) > =(ζ), (A.1)

where
I(s) =

∫ ∞

−∞
log (γ(ζ)− ik sinX)

1
ζ + k sin s

dζ, (A.2)

and the functional dependence on X is implied. Note that, as described in section 3, this
integral exists in a limiting sense.

Insert figure 1 about here

Attention is now given to writing I(s) in terms of simple finite range integrals. Firstly, it
is expedient to differentiate I(s) with respect to s and to integrate once by parts. Rearranging
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this expression and transforming the integration variables to ζ = −k sin t, γ(ζ) = ik cos t gives

dI

ds
(s) =

cos s

sin2 s− cos2 X

∫

C1

[
sin2 s

sin2 t− sin2 s
− cos2 X

sin2 t− cos2 X

]
(cos t + sin X) dt. (A.3)

where the contour C1 is illustrated in figure 1. For simplicity, only the location of the poles
of the integrand for complex values of X satisfying (2.9) are shown in figure 1. By a simple
substitution (A.3) can be rewritten as the loop integral

dI

ds
(s) =

cos s

sin2 s− cos2 X

∫

C1+C2

[
sin2 s

sin2 t− sin2 s
− cos2 X

sin2 t− cos2 X

] (
1
2

cos t− t

π
sinX

)
dt.

(A.4)
The integral can now be evaluated by picking up the residue contributions from inside the loop
C1 + C2, see figure 1. After a good deal of algebra it is found that

dI

ds
(s) =

i

sin2 s− cos2 X

[
π

2
sin(2s)− (2s + π) sin s sinX + (π − 2X) cos s cosX

]
, (A.5)

for any location of X in the range (2.8), (2.9), and this can further be expressed as

dI

ds
(s) =

i

2

[
2u− π sinu

cosu
+

2v − π sin v

cos v

]
(A.6)

in which u = s−X + π and v = s + X.
To obtain I(s), (A.6) is in a suitable form to integrate, with the limits chosen as s and −π.

Using u and v as suitable substitution variables, it is found that

I(s) = I(−π) +
i

2

{∫ s−X+π

0
+

∫ s+X

0
−

∫ −X

0
−

∫ X−π

0

}
2u− π sinu

cosu
du, (A.7)

and so K+(−k sin s,X) can be written, from (A.1), as

K+(−k sin s,X) =
M(s−X + π)M(s + X)

M(−X)M(X − π)
exp

{
1

2πi
I(−π)

}
, (A.8)

where the function M(s) is defined by (4.7). Simplification of expression (A.8) may be achieved
by using (2.14) at s = −π, that is α = 0, to give

K2
+(0, X) = γ(0)− ik sinX. (A.9)

Hence
exp

{
1

2πi
I(−π)

}
=
√

2ke−iπ/4 cos
1
2
(X − π/2). (A.10)

Properties (4.8) and (4.9) with β = π/2 can now be used to simplify (A.8) thus:

K+(−k sin s,X) =
√

2ke−iπ/4M−2(π/2)M(s−X + π)M(s + X) (A.11)

which agrees with (4.16).
The above technique may be adapted to other kernels of physical interest, for example, those

of the form γ(α) sinh(γ(α))− ik sinX.
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