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Abstract

Smart structures are components used in engineering applications that are capable
of sensing or reacting to their environment in a predictable and desired manner.
In addition to carrying mechanical loads, smart structures may alleviate vibration,
reduce acoustic noise, change their mechanical properties as required or monitor their
own condition. With the latter point in mind, this article examines the scattering of
flexural waves by a semi-infinite crack in a non-ferrous thin plate that is subjected to
a constant current aligned in the direction of the crack edge. The aim is to investigate
whether the current can be used to detect or inhibit the onset of crack growth. The
model problem is amenable to exact solution via the Wiener-Hopf technique, which
enables an explicit analysis of the bending (and twisting) moment intensity factors
at the crack tip, and also the diffracted field. The latter contains an edge wave
component, and its amplitude is determined explicitly in terms of the current and
incidence angle of the forcing flexural wave. It is further observed that the edge wave
phase speed exhibits a dual dependence on frequency and current, resulting in two
distinct asymptotic behaviours.

1 Introduction

Recent advances in non-destructive testing include the implementation of smart struc-
tures. In addition to their primary purpose, such components are designed to facili-
tate or perform at least one more function. A load bearing engineering element may,
for example, be designed to allow continual crack diagnosis by the incorporation of
an integrated system to record changes in mechanically induced flexural waves. The
latter are scattered at a crack interface, thereby providing vital information about
the integrity of the structure. Smart structures could detect the scattered vibrations
in several ways: for example by measurement of its electrical properties if it is either
manufactured using integrated piezoelectric materials or an external electromagnetic
field is generated around the body which interacts with the elastic field. Recent
research [1] has demonstrated that the presence of such an external field in a thin
plate containing a finite length crack has a significant effect on the bending moment
intensity factor at the crack tip. Such phenomena could, in principle, be a means not
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only to detect the crack but to control the onset of crack growth within a structure.
To date, however, the effect of an electric current on the diffracted field and/or on
the amplitude and phase speed of waves localised along the crack faces (edge waves)
has received little or no attention.

Konenkov [2] is widely attributed1 to have been the first, in 1960, to have demon-
strated the existence of a flexural wave guided by the free edge of a semi-infinite
isotropic thin elastic plate. Perhaps due to the inaccessibility of his work to western
researchers, this result was independently rediscovered some fourteen years later by
Sinha [5] and by Thurston and McKenna [6] resulting in two articles appearing in
western journals. Such waves, now termed edge waves, have properties analogous to
a Rayleigh surface wave on an elastic half-space; that is, they decay exponentially
with distance from the edge. Interest in the topic of edge waves picked up in the
1990s and since then a wide variety of results concerning the existence of edge waves
have appeared in the literature [7]- [10].

The model problem considered herein comprises an infinite elastic plate with a
semi-infinite straight crack. The plate is not subject to fluid-loading but a uniform
current flows in the plate in a direction parallel to the crack edges. The presence
of the current is reflected in the form of the governing plate equation - a modified
(orthotropic) version of the usual plate equation. A time-harmonic flexural wave is
incident at arbitrary angle to the crack and undergoes scattering at the crack tip.
The model problem is solved exactly using the Wiener-Hopf technique. The aim
of this paper is to determine how the presence of the electric current affects both
the generation of edge waves on the crack faces and the edge diffracted field. The
Kirchhoff bending and twisting stress intensity factors are also studied.

This investigation differs from [1] in that Ambur et al. considered a crack of finite
length and only the case of symmetric forcing; they formulated the problem as an
integral equation and employed a numerical solution procedure. The present model
problem is simpler in form, which allows an exact solution and thus enables a more
detailed understanding of the physics of the problem. Further, the focus of [1] was
the effect of the current on the bending moment intensity factor (herein referred to
as the Kirchhoff stress intensity factor, κ̄1) whereas here, as well as the bending and
twisting moment stress intensity factors, the diffracted and edge wave fields are also
examined.

It is convenient to decompose the problem into its symmetric and anti-symmetric
component parts and, in section two, these sub-problems are formulated. In section
three, the Wiener-Hopf procedure is used to obtain a closed form solution to both sub-
problems. The physical features of the Wiener-Hopf solution are discussed in section
four and a range of numerical results are presented, whilst, in the final section, the
findings are discussed and some conclusions drawn.

2 Formulation of the boundary value problem

An isotropic, elastic plate, of thickness 2h, Poisson’s ratio ν, Young’s modulus E
and density ρ, is assumed to lie in the x̄ȳ−plane of a Cartesian coordinate system.

1It has recently been pointed out, see [3], that an earlier work on stability of static plate deflections
by Ishlinskii [4] presented eigenfrequencies and dispersion relations that are closely related to those
of Konenkov.
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The plate carries a uniform, constant electric current of density (I0, 0, 0), see fig-
ure 1. The dimensional in-vacuo time-harmonic flexural displacement of the plate,
<{w̄(x̄, ȳ)e−iωt̄}, is governed by the modified plate equation derived in [1]. That is,

D

(
∂4

∂x̄4
+ 2

∂4

∂x̄2∂ȳ2
+

∂4

∂ȳ4

)
w̄ − 2ρhω2w̄ − J2

0

(
w̄ +

h2

3

∂2w̄

∂x̄2

)
= 0 (2.1)

where ω is the angular frequency of the steady-state flexural wave field, D = 2Eh3/(3(1−
ν2)) is the plate bending stiffness and J0 =

√
2hµrµ0I0 in which µ0, µr are respec-

tively the magnetic permeability in vacuo and the relative magnetic permeability of
the plate. The reader is referred to [1] and [11] for full details of the derivation of
this and related equations; note, however, that herein the unscaled (scaled) current
density are denoted by as I0 (J0), whereas in Ambur et al. it is written as J0 (J̃0). It
is convenient to non-dimensionalise variables with respect to time and length scales
ω−1 and k−1 respectively, where

k =

(
2ρhω2 + J2

0

D

)1/4

, (2.2)

and thus kw̄ = w etc. Then,

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
− w − ε2∂2w

∂x2
= 0 (2.3)

where

ε2 =
J2

0h2

3Dk2
. (2.4)

This somewhat unusual scaling (2.2) ensures that the dimensionless governing equa-
tion contains the single parameter ε, which has different limiting behaviours according
to whether ω →∞ or J0 →∞.

Forcing is introduced in the form of a plane flexural wave, of unit amplitude,
incident at angle θ to the x-axis (the crack is chosen to lie along the negative x-axis).
Thus, the incident wave has the form

winc(x, y) = exp{−iλ(x cos θ + y sin θ)} (2.5)

where, on substituting (2.5) into (2.3), the wavenumber λ is given by

λ(θ) =

√
−ε2 cos2 θ

2
+

√
ε4 cos4 θ

4
+ 1. (2.6)

Note that, here and henceforth, if λ is written without an explicit argument it will
be taken to be this function of the incident angle θ. At a traction free crack the
bending moment My and the effective Kirchhoff shear force2 Vy = Qy+Myx,x must
both vanish. Thus,

∂2w

∂y2
+ ν

∂2w

∂x2
= 0, (2.7)

∂3w

∂y3
+ (2− ν)

∂3w

∂y∂x2
= 0, (2.8)
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Figure 1: Geometry of the plate showing the location of the crack, the incident wave
and direction of the current.

where the quantity w(x, y) denotes the total plate displacement, that is, the incident
wave winc(x, y), and the scattered field ws(x, y).

For ease of exposition the cases of symmetric and anti-symmetric displacements
are considered separately. Thus, the plate displacement may be expressed as

w(x, y) = s(x, y) + cos(λy sin θ)e−iλx cos θ

︸ ︷︷ ︸
symmetric

+ a(x, y)− i sin(λy sin θ)e−iλx cos θ

︸ ︷︷ ︸
anti−symmetric

(2.9)

where s(x, y) and a(x, y) denote the symmetric and anti-symmetric components of
the scattered field respectively. The boundary value problems for the symmetric and
anti-symmetric scattered fields can now be formulated.

2.1 Symmetric case

The symmetric component of the displacement satisfies the modified plate equation
(2.3). Since the displacement is symmetric about the line y = 0, its odd derivatives
in y must be zero along y = 0, x > 0 (where the plate is continuous). This implies
that (2.8) holds for x > 0 as well as along the crack. Thus, expressed in terms of
s(x, y), the appropriate boundary conditions for symmetric displacement are

∂s

∂y
= 0, y = 0, x > 0, (2.10)

∂3s

∂y3
+ (2− ν)

∂3s

∂x2∂y
= 0, y = 0, −∞ < x < ∞, (2.11)

∂2s

∂y2
+ ν

∂2s

∂x2
= λ2f s(θ)e−iλx cos θ, y = 0, x < 0, (2.12)

2For a derivation of this condition see, for example, the book by Graff [12]; note that the notation
used herein differs slightly from that in [1] but is consistent with [12].
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where f s(θ) = sin2 θ + ν cos2 θ.

2.2 Anti-symmetric case

The anti-symmetric component of the displacement also satisfies the modified plate
equation (2.3). In this case, however, displacement (and even derivatives in y) must
be zero along y = 0, x > 0. This implies that (2.7) holds for x > 0 as well as along
the crack. Thus, expressed in terms of a(x, y), the appropriate boundary conditions
for anti-symmetric displacement are

a = 0, y = 0, x > 0, (2.13)

∂2a

∂y2
+ ν

∂2a

∂x2
= 0, y = 0, −∞ < x < ∞, (2.14)

∂3a

∂y3
+ (2− ν)

∂3a

∂x2∂y
= −iλ3fa(θ)e−iλx cos θ, y = 0, x < 0, (2.15)

where fa(θ) = sin3 θ + (2− ν) cos2 θ sin θ.

3 The Wiener-Hopf Procedure

Both the symmetric and anti-symmetric cases described above constitute typical
Wiener-Hopf problems. For readers who are unfamiliar with the Wiener-Hopf tech-
nique, reference [13] provides a useful history whilst [14] is the definitive introductory
text. The procedure commences via Fourier transformation in the x-direction, where
the transform of the total scattered displacement is here defined as

W (α, y) =

∫ ∞

−∞
ws(x, y)eiαx dx =

∫ ∞

−∞
s(x, y)eiαx dx +

∫ ∞

−∞
a(x, y)eiαx dx

= S(α, y) + A(α, y). (3.16)

The inverse Fourier transform is similarly defined as

ws(x, y) =
1

2π

∫ ∞

−∞
W (α, y)e−iαx dα, (3.17)

where the path of integration in the α-plane lies along the real line indented above
(below) any poles on the negative (positive) real axis. Note that the pole due to the
incident wave term, which may lie on either the positive or negative side of the real
line, is always traversed by indentation of the contour below this singularity. The
reasons for the choice of indentation will become clear later.

It is necessary to also define half range Fourier transforms, that is,

W+(α, y) =

∫ ∞

0

ws(x, y)eiαx dx

= S+(α, y) + A+(α, y), (3.18)

and

W−(α, y) =

∫ 0

−∞
ws(x, y)eiαx dx

= S−(α, y) + A−(α, y). (3.19)
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Here and henceforth the subscript + and − indicate functions which are analytic in
overlapping upper and lower halves of the complex α-plane, respectively. Note that
the integration path of (3.17) lies in the overlap region.

On taking the full-range Fourier transform of (2.3), it is easily seen that

W
′′′′ − 2α2W

′′
+ (α4 − 1 + ε2α2)W = 0, (3.20)

where prime indicates differentiation with respect to y. The solution to this ordinary
differential equation that decays or has outgoing wave behaviour as y →∞ is

W (α, y) = C(α)e−γ1y + D(α)e−γ2y (3.21)

where γ1 =
√

α2 + γ3, γ2 =
√

α2 − γ3 and γ3 =
√

1− ε2α2 =
√

λ4 + ε2λ2 cos2 θ − ε2α2.
The branch-cut locations and chosen Riemann sheets of these functions, which yield
the required property for W (α, y), will be described in Section four. Note that, due
to the fact that the full problem is to be solved in terms of its symmetric and anti-
symmetric component parts, it is sufficient to consider only the half-plane y ≥ 0.
The functions C(α) and D(α) are now determined using the boundary conditions
and will take different forms for the symmetric and anti-symmetric cases.

3.1 Symmetric case

On applying the full range Fourier transform to (2.11), it is found that

α2(2− ν)S
′ − S

′′′
= 0, y = 0 (3.22)

and it follows, on substituting (3.21) into (3.22), that

Ds(α) = −γ1[α
2(ν − 1) + γ3]

γ2[α2(ν − 1)− γ3]
Cs(α), (3.23)

where the superscript s denotes that these functions are specific to the symmetric
problem. Thus, the symmetric part of equation (3.21) now becomes

S(α, y) = − γ1C
s(α)

[α2(ν − 1)− γ3]

{
γ3 + (1− ν)α2

γ1

e−γ1y +
γ3 − (1− ν)α2

γ2

e−γ2y

}
,

(3.24)
which may be recast as

S(α, y) =
Es(α)

2γ3

{
γ3 + (1− ν)α2

γ1

e−γ1y +
γ3 − (1− ν)α2

γ2

e−γ2y

}
, (3.25)

where the quantity Es(α) is unknown and is determined using the remaining bound-
ary conditions and the Wiener-Hopf procedure.

On taking the appropriate half range transforms of boundary conditions (2.10)
and (2.12), it is found that

S
′
+(α, 0) = 0 (3.26)

and

S
′′
−(α, 0)− α2νS−(α, 0) + νbs − iνcsα =

−iλ2f s(θ)

(α− λ cos θ)−
, (3.27)
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where cs = s(0−, 0), bs = sx(0
−, 0), and the − subscript on the right hand term

indicates that the incident wave pole lies above the inverse contour, i.e. in the upper
half-plane.

On differentiating (3.25) with respect to y, setting y = 0 and using (3.26), it is
found that

S
′
−(α, 0) = −Es(α). (3.28)

Similarly, on using (3.25), it is found that

Φs
+(α) + S

′′
−(α, 0)− α2νS−(α, 0) = (3.29)

− α2ν
Es(α)

2γ3

{
[γ3 + (1− ν)α2]

γ1

+
[γ3 − (1− ν)α2]

γ2

}

+
Es(α)

2γ3

{
γ1[γ3 + (1− ν)α2] + γ2[γ3 − (1− ν)α2]

}

where Φs
+(α) = S

′′
+(α, 0)− α2νS+(α, 0). This can be rearranged as

Φs
+(α) + S

′′
−(α, 0)− α2νS−(α, 0) = −S

′
−(α, 0)K(α) (3.30)

where

K(α) =
1

2γ3

{
[γ3 + (1− ν)α2]2

γ1

− [γ3 − (1− ν)α2]2

γ2

}
. (3.31)

The Wiener-Hopf equation is now obtained by using (3.27):

Φs
+(α)− iλ2f s(θ)

(α− λ cos θ)−
− νbs + iνcsα = −S ′−(α, 0)K(α). (3.32)

In the usual manner, a product factorisation (see the Appendix for details) may be
uniquely defined as

K(α) = K+(α)K−(α), K−(−α) = K+(α), (3.33)

where K±(α) are analytic and zero free in their indicated half-planes. Then, on
dividing (3.32) through by K+(α) and performing a sum-split on the forcing term,
the Wiener-Hopf equation can be rearranged as

Φs
+(α)

K+(α)
+

iνcsα− νbs

K+(α)
− iλ2f s(θ)

α− λ cos θ

{
1

K+(α)
− 1

K+(λ cos θ)

}

= F s(α) =
iλ2f s(θ)

K+(λ cos θ)(α− λ cos θ)−
− S ′−(α, 0)K−(α). (3.34)

This has been organised so that the left hand side is analytic in the upper half-plane
whilst the right hand side is analytic in the overlapping lower half-plane. Thus, both
sides offer an analytic continuation into the whole of the complex α plane and so
must equate to an entire function, F s(α) say. It follows that

S ′−(α, 0) =
iλ2f s(θ)

K+(λ cos θ)K−(α)(α− λ cos θ)−
− F s(α)

K−(α)
(3.35)

and on using (3.35) and (3.26) it is found that

∂s

∂y
(x, 0) =

1

2π

∫ ∞

−∞

{
iλ2f s(θ)

K+(λ cos θ)K−(α)(α− λ cos θ)−
− F s(α)

K−(α)

}
e−iαx dα. (3.36)
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Clearly, this is zero for x > 0. Further, since the integral must exist for all x and
K−(α) = O(α1/2) as |α| → ∞, it is straightforward to show that F s(α) = 0. It
follows, from (3.28) and (3.25) that the symmetric component of displacement is
given by

s(x, y) =
−1

2π

∫ ∞

−∞

iλ2f s(θ)

K+(λ cos θ)K−(α)(α− λ cos θ)−

×
{

γ3 + (1− ν)α2

γ1

e−γ1y +
γ3 − (1− ν)α2

γ2

e−γ2y

}
e−iαx

2γ3

dα. (3.37)

3.2 Anti-symmetric case

The Wiener-Hopf procedure follows in an analogous manner. Equivalent to (3.25)
and (3.28), it is found from (2.13) and (2.14) that

A(α, y) =
A−(α, 0)

2γ3

{
[γ3 − (1− ν)α2] e−γ1y + [γ3 + (1− ν)α2] e−γ2y

}
. (3.38)

On using the remaining boundary condition (2.15) the Wiener-Hopf equation is for-
mulated as

Φa
+(α)− λ3fa(θ)

(α− λ cos θ)−
+ (2− ν)(iαca − ba) = A−(α, 0)Ka(α),

where Φa
+(α) = A

′′′
+(α, 0)− α2(2− ν)A

′
+(α, 0), ca = ay(0

+, 0), ba = axy(0
+, 0) and

Ka(α) = γ1γ2K(α). (3.39)

A product factorisation for Ka(α) is defined in the same manner as (3.33). This
enables the Wiener-Hopf procedure to be performed, and it follows that

A−(α, 0) =
F a(α)

Ka−(α)
− λ3fa(θ)

Ka
+(λ cos θ)Ka−(α)(α− λ cos θ)−

, (3.40)

where F a(α) is an (as yet unknown) entire function. On considering the behaviour of
Kirchhoff’s shear force as x → 0+, and ensuring finite energy density at the crack tip,
it is found that F a(α) = 0. Thus, the exact solution to the anti-symmetric problem
is

a(x, y) =
−1

2π

∫ ∞

−∞

λ3fa(θ)

Ka
+(λ cos θ)Ka−(α)(α− λ cos θ)−

(3.41)

×{
[γ3 − (1− ν)α2] e−γ1y + [γ3 + (1− ν)α2] e−γ2y

} e−iαx

2γ3

dα.

4 Analysis of the solution

For both the symmetric and anti-symmetric sub-problems considered above, the sym-
metric kernel K(α) is fundamental to the underlying physics. Recall that

K(α) =
1

2γ3

{
[γ3 + (1− ν)α2]2

γ1

− [γ3 − (1− ν)α2]2

γ2

}
(4.42)
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where γ1 =
√

α2 + γ3, γ2 =
√

α2 − γ3 and γ3 =
√

1− ε2α2, and hence

K(α) ∼ |α|
2

(3 + ν)(1− ν) as |α| → ∞.

Note that the branch-cut functions are related via

γ2
1 + γ2

2 = 2α2 and γ2
1 − γ2

2 = 2γ3, (4.43)

in which γ1 and γ2 have branch-points at α1 and α2 respectively, where

α1 = i

√√
ε4 + 4 + ε2

2
∼

{
i + iε2

4
, ε → 0,

iε + i
2ε3

, ε →∞ (4.44)

and

α2 =

√√
ε4 + 4− ε2

2
∼

{
1− ε2

4
, ε → 0,

1
ε
− 1

2ε5
, ε →∞.

(4.45)

The branch-cuts from ±αi, i = 1, 2, and those at α = ±1/ε, are taken to infinity
respectively in the upper/lower half planes. The sheet of the Riemann surface is
chosen which, on the real line between the respective branch-points, yields either
positive real or purely negative imaginary values for the three square-root functions.
This means that the kernel has zeros at ±αed and ±αev which correspond to an edge
wave and an evanescent mode. These roots can be located analytically; it is found
that

αed =

(√
p4ε4 + 4p2(p2 − 4)− p2ε2

2(p2 − 4)

)1/2

∼
{

p1/2

(p2−4)1/4 − p3/2ε2

4(p2−4)3/4 , ε → 0,
1
ε
− (p2−4)

2p2ε5
, ε →∞,

(4.46)
and

αev = i

(√
p4ε4 + 4p2(p2 − 4) + p2ε2

2(p2 − 4)

)1/2

∼




ip1/2

(p2−4)1/4 + ip3/2ε2

4(p2−4)3/4 , ε → 0,

ipε√
p2−4

+
i
√

p2−4

2pε3
, ε →∞,

(4.47)
where p = 2(1 − ν +

√
1 + 2ν(ν − 1) )/ν2. It is straightforward to show that the

quantity (p2− 4)/p2 tends to unity as ν → 0 and from there decreases monotonically
as ν → 1/2. Thus, after a little algebra, it follows that 0 < α2 < αed < 1/ε as ε →∞
for 0 < ν < 1/2. In fact, it can be verified numerically that the edge wave pole lies
between the branch-point α2 and the branch-point of γ3, 1/ε, for all values of ε.

4.1 Steepest descent analysis

The exact solution of the boundary value problem was obtained in Section 3. The
form presented in (3.37) and (3.41) is not particularly helpful for evaluation purposes,
so the standard approach is to obtain the diffracted far-field behaviour together with
any propagating wave terms. To achieve this end the integration contour is deformed
into the steepest descent path(s). It can be seen that the combined scattered field
ws(x, y) = s(x, y) + a(x, y) is composed of an integral with two exponential terms in
the integrand: e−γ1y−iαx and e−γ2y−iαx. The usual approach is thus to separate ws
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into two integrals before deforming each into its own steepest descent path. Doing
this, however, introduces the branch-cuts in γ3, whereas the combined integral is free
of these singularities. It is preferable, therefore, to keep the integrals together and
deform into the steepest descent curve for the γ2 term, on which it can be shown, in a
similar fashion to that discussed in detail in [15] and [16], that the contribution from
the γ1 exponent is always exponentially smaller than that from the γ2 exponent.

On introducing the change of variables

x = r cos ψ, y = r sin ψ, (4.48)

the saddle point is deduced from the vanishing of the derivative of the phase factor
χ(α), where

rχ(α) = γ2(α)y + iαx = r(γ2(α) sin ψ + iα cos ψ). (4.49)

This yields
α(2γ3(α) + ε2)

2γ2(α)γ3(α)

∣∣∣∣
α=αs

= −i cot ψ (4.50)

at the saddle point αs, which, following [16] we choose to write as

αs = −λ(β) cos β (4.51)

with λ(β) given in (2.6). Substituting (4.51) into (4.50) yields a relationship between
ψ and β, namely

cot β

(
1 +

ε2

2λ2(β)

)
= cot ψ, (4.52)

or, writing

Q(β) =
2λ2(β)

2λ2(β) + ε2
, (4.53)

then

cos ψ =
cos β√

cos2 β + Q2(β) sin2 β
, sin ψ =

Q(β) sin β√
cos2 β + Q2(β) sin2 β

. (4.54)

Note that β is a transformed angle, which takes account of the anisotropy of the
governing plate equation. The saddle moves from −α2 when β = 0 to +α2 when
β = π, and the shadow boundary is located at

β = π − θ, 0 ≤ β ≤ π, (4.55)

(and at β = θ−π in the region y < 0) not at the physical angle ψ = π−θ (or θ−π).
Near the saddle point the phase function behaves as

χ(α) ∼ χ(αs) +
1

2!
(α− αs)

2χ′′(αs), (4.56)

where

χ(αs) = −iλ(β)
cos2(β) + Q(β) sin2 β√
cos2 β + Q2(β) sin2 β

= −iλ(β) cos(β − ψ), (4.57)

and so the steepest descent path is defined as the contour on which

=(χ(α)) = =(χ(αs)), <(χ(α)) ≥ <(χ(αs)). (4.58)
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The details of the contour are similar to those found in other articles (e.g. [16] and
[17]) and so are omitted here for brevity. Once on the steepest descent path, a uniform
result for the saddle point contribution is obtained in a straightforward manner. This
gives, after a little algebra,

ws ∼ F (αs)e
−rχ(αs)e−ir(λ cos θ−αs)2|χ′′(αs)|/2erfc

[√
r

2
e−iπ/4(λ cos θ − αs)|χ′′(αs)|1/2

]

(4.59)
where

F (αs) =
λ2f s(θ)(γ3(αs)− (1− ν)α2

s)

4γ2(αs)γ3(αs)K−(αs)K+(λ cos θ)
− iλ3fa(θ)(γ3(αs) + (1− ν)α2

s)

4γ3(αs)Ka−(αs)Ka
+(λ cos θ)

. (4.60)

The reader is reminded that the appearance of λ without an argument should be
read as λ(θ).

The complementary error function, erfc[z], is a decaying function as =z < 0, but
is equal to 2− erfc[−z] for =(z) > 0; the latter has the contribution of the specular
reflected wave term contained within it when the shadow boundary has been crossed.
From this, and the asymptotic result

e−iz2

erfc(ze−iπ/4) ∼ eiπ/4

√
πz

, |z| → ∞,<z > 0, (4.61)

we deduce (for λ cos θ > αs)

ws ∼
√

2

πr

F (αs)e
−rχ(αs)eiπ/4

(λ cos θ − αs)|χ′′(αs)|1/2
, β < π − θ, (4.62)

and (when λ cos θ < αs)

ws ∼ 2F (αs)e
iλ(x cos θ+y sin θ)

−
√

2

πr

F (αs)e
−rχ(αs)eiπ/4

(αs − λ cos θ)|χ′′(αs)|1/2
, β > π − θ, (4.63)

as r →∞ as long as β is not too close to π − θ.
It can be shown that deformation of the Fourier integral contour onto the steepest

descent path crosses the edge wave pole αed for observation angle ψ close to π, i.e.
near the crack edge. Further, it is found that the deformation never crosses the
evanescent pole at αev. Thus, the contribution from the edge wave must be added to
the far-field diffracted and specular terms (4.62, 4.63) to obtain the total scattered
field.

4.2 The edge wave

Of primary interest is the effect on the edge wave of varying the scaled current density
J0. There are two features to be investigated: the phase speed and the amplitude.
For the numerical results presented herein an aluminium plate of thickness 0.004m is
considered. Thus, typical values are chosen as: h = 0.002m, ρ = 2.743× 103kgm−3,
E = 6.9 × 1010Nm−2, µr = 1 and ν = 0.33. For consistency with Ambur et al. [1],
the maximum current density I0 will be taken as 2 × 109Am−2, although such high
values will almost certainly be unfeasible for most engineering applications.
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Asymptotic expressions for the phase speed c as the radian frequency ω →∞ or
current density J0 → ∞ are readily available since these limits correspond respec-
tively to ε → 0 and ε →∞. Thus,

c =
ω

kαed

∼
(

ω2(p2 − 4)D

2p2ρh

)1/4

, ω →∞ (4.64)

and

c =
ω

kαed

∼ ωh√
3
, J0 →∞. (4.65)

These two limiting behaviours are demonstrated in figure 2. Note that the constant
asymptotic limit (4.65) is clearly visible in figure 2(b), but in order to attain this
limit the values of J0 exceed those that are physically realistic in this context. Also
of interest is the ratio of the phase speed of edge waves to the phase speed of flexural
waves, which can be determined exactly:

c

cinc|θ=0

=

√
p2(

√
ε4 + 4(p2 − 4)/p2 − ε2)

(p2 − 4)(
√

ε4 + 4− ε2)
. (4.66)

This, as for the original Konenkov wave [2], shows remarkably little deviation from
unity whatever the current.

5000 10000 15000 20000 25000 30000
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300
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Phase Speed

200000 400000 600000 800000
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Phase Speed

(a) (b)

Figure 2: (a) Phase speed of the edge wave plotted against frequency for J0 = 0
(dashed curve) and J0 = 20000kg1/2 s−1 m−1, and (b) the phase speed against J0 for
frequencies of 50Hz (lowest curve), 150Hz and 250Hz (uppermost curve).

The symmetric and anti-symmetric components of the edge wave amplitude are
obtained from (3.37) and (3.41) by deforming the path of integration onto the steepest
descent contour, and picking up a contribution from the residue α = αed in the vicinity
of the crack. On putting y = 0 and using (4.43), it is found that the flexural edge
wave term is

wed = sed + aed, (4.67)
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where

sed =
−λ2f s(θ)K+(αed)

K ′(αed)(αed − λ cos θ)−K+(λ cos θ)
(4.68)

×
{

γ1(αed)γ2(αed) + α2
edν√

2 γ1(αed)γ2(αed)
√

α2
ed + γ1(αed)γ2(αed)

}

and

aed =
−iλ3fa(θ)Ka

+(αed)

Ka
+(λ cos θ)(αed − λ cos θ)−Ka′(αed)

. (4.69)

Figure 3(a) shows the absolute value of the dimensional amplitude of the edge
wave (|s̄ed + āed| = |sed + aed|/k) against angular frequency and J0 for θ = π/1000. It
is clear that the amplitude decreases monotonically as either the frequency or current
is increased. It is important to note that most of the dependence on frequency arises
due to the dependence on k. Thus, the non-dimensional equivalent of this graph is
nearly frequency independent, especially as J0 → ∞. Figure 3(b) shows the non-
dimensional amplitude of the edge wave, at a frequency of 500Hz and J0 = 100kg1/2

s−1 m−1, plotted against θ. The edge wave is excited principally for incoming waves
in the first and fourth quadrants (|θ| < π/2), with little energy conversion into the
edge wave in the back-scattered direction. This picture is typical for all values of J0

and ω.
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Figure 3: (a) Dimensional amplitude of the edge wave plotted against ω and J0

and (b) the non-dimensional edge wave amplitude as a polar plot against angle of
incidence at 500Hz and J0 = 100kg1/2 s−1 m−1.
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4.3 Kirchhoff stress intensity factors

Of significant engineering interest are the crack tip stress fields generated in a loaded,
cracked plate. These can be modelled using 3-D elasticity [12] or a plate theory such
as Reissner-Mindlin or Kirchhoff. Plate theories are not valid for thick plates or in the
crack tip plastic zone, the latter deficiency being related to the stress field singularities
located at the crack tip. Further, Kirchhoff theory cannot exactly satisfy the stress
free conditions at the crack, whereas the more sophisticated Reissner-Mindlin theory
(and other higher order models) can. Nevertheless, both plate theories yield stress
fields that are valid outside the plastic crack tip and free edge zones. In particular,
for r > h where r is the radial distance from the crack tip, Kirchhoff theory gives a
good approximation to the three dimensional stress fields, see e.g. [19]. Additionally,
Kirchhoff theory is easy to implement and provides the correct energy release rate3

[20]. Thus, the Kirchhoff stress intensity factors are viewed as a useful guide as to
the strength of the stress or bending/twisting moment fields close to (though not at)
the crack tip.

There is some variation in the definition of the stress intensity factors (cf. [21],
[20]); however, the following definitions are used herein

κ̄1 = lim
x→0+

√
2πx σ̄yy(x, 0, h) and κ̄2 = lim

x→0+

√
2πx σ̄xy(x, 0, h), (4.70)

where, as in (2.1) the overbars indicate that these are dimensional quantities. The
Kirchhoff stress intensity factors κ̄1 and κ̄2 are respectively the coefficients of the
singularities in the stress fields just ahead of the crack for a bending mode and an
anti-symmetric twisting-transverse shear mode. Ambur et al. [1] considered only
symmetric forcing and thus only κ̄1 was relevant to their study.

Kirchhoff theory gives the following expressions for the shear stresses:

σ̄yy(x, y, h) = − Eh

1− ν2

(
∂2s̄

∂ȳ2
+ ν

∂2s̄

∂x̄2

)
= − Ekh

1− ν2

(
∂2s

∂y2
+ ν

∂2s

∂x2

)
(4.71)

and

σ̄xy(x, y, h) = − Eh

1 + ν

∂2ā

∂x̄∂ȳ
= − Ekh

1 + ν

∂2a

∂x∂y
(4.72)

where s(x, y) and a(x, y) are given by (3.37) and (3.41) respectively, and s̄(x, y) and
ā(x, y) are their dimensional counterparts.

It is a straightforward procedure, using the asymptotic properties (A.12) and
(A.13), to show that

(
∂2s

∂y2
+ ν

∂2s

∂x2

)
∼ − λ2f s(θ)

K+(λ cos θ)

√
(1− ν)(3 + ν)

2πx
, y = 0, x → 0 (4.73)

and
∂2a

∂x∂y
∼ iλ3fa(θ)(1 + ν)√

2πx(1− ν)(3 + ν)Ka
+(λ cos θ)

, y = 0, x → 0. (4.74)

It follows that

κ̄1 =
Ekhλ2f s(θ)

√
(1− ν)(3 + ν)

(1− ν2)K+(λ cos θ)
(4.75)

3The energy of the newly created crack surface per unit area.
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and

κ̄2 = − iEkhλ3fa(θ)

Ka
+(λ cos θ)

√
(1− ν)(3 + ν)

. (4.76)

The stress intensity factors vary with current, frequency and the angle of the
incident wave. Figure 4 shows a polar plot of |κ̄1/E| and |κ̄2/E| for a frequency of
500 Hz and three different values of current. The innermost curve corresponds to J0 =
0kg1/2 s−1 m−1 and the magnitude increases sequentially for J0 = 20000, 50000kg1/2 s−1 m−1.
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Figure 4: Polar plot of (a) |κ̄1/E| for J0 = 0kg1/2 s−1 m−1 (innermost curve),
J0 = 20000 and J0 = 50000 (outermost curve); (b) |κ̄2/E| for J0 = 0kg1/2 s−1 m−1

(innermost curve), J0 = 20000 and J0 = 50000 (outermost curve).

Finally, the behaviour of the moments can be deduced as ω → ∞ (equivalently
ε → 0). It is found in this limit that λ → 1, α2 → 1 and α1 → i. It is clear then that
the stress intensity factors depend on ω only through the factor kh and consequently
are of order ω1/2 as ω →∞. Thus,

κ̄1

E
∼ −

(
2ρ

D

)1/4 h5/4ω1/2f s(θ)
√

(1− ν)(3 + ν)

K+(cos θ)(1− ν2)
, ω →∞ (4.77)

and
κ̄2

E
∼

(
2ρ

D

)1/4
h5/4ω1/2fa(θ)

Ka
+(cos θ)

√
(1− ν)(3 + ν)

, ω →∞. (4.78)

5 Discussion

The plate equation (2.1) was derived in [1] strictly for a non-ferromagnetic material.
For this reason, all numerical results presented both in [1] and this article have
been generated for an aluminium plate. Furthermore, the reader is reminded that
the quantity J0 is proportional to the current density through the expression J0 =√

2hµrµ0 I0, in which µ0, µr are respectively the magnetic permeability in a vacuum
and the relative magnetic permeability in the plate. Ambur et al. use currents up
to I0 = 100

√
E/h A m−2 for which J0 =

√
2hµrµ0 I0 ≈ 930000kg1/2 s−1 m−1. (As

mentioned earlier, a different notation is used herein, where I0, J0 are equivalent to
J0, J̃0 used in [1].) Thus, the choice of J0 = 0−50000kg1/2 s−1 m−1 used in figures 2–4
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are well within the scaled current density range chosen in [1] and are more realistic
than the upper values in Ambur et al.’s results.

It has been found that the phase speed of the edge wave is highly dependent on
frequency and current. Two distinct asymptotic behaviours are observed depending
on whether ω → ∞ with J0 fixed or vice-versa; these limits correspond respectively
to ε → 0 and ε → ∞. As ω → ∞ the phase speed grows as O(ω1/2), whereas as
J0 → ∞ it tends to a constant value: ωh/

√
3. The two stress intensity factors are

both highly dependent on frequency, current and angle of incidence. Similar to the
phase speed, they grow as O(ω1/2) as ω →∞.

To conclude, the results presented herein indicate that, although the current does
alter the scattered field in a significant way, for physically reasonable current ampli-
tudes it is unlikely to offer a mechanism for either suppressing crack growth, or for
the continuous monitoring and detection of a new crack. It may, however, offer a
useful means by which the flexural wave field can be localized or channelled along
free edges.

A Factorisation of the kernel

A key feature of the kernel is that, using (4.43), it may be written in a form that is
independent of γ3. Thus,

K(α) =

√
γ1γ2√

2
√

1 + α2/(γ1γ2)

{
1 + (1− ν)

2α2

γ1γ2

− ν2α4

γ2
1γ

2
2

}
. (A.1)

It is immediately apparent that γ1 and γ2 appear in this expression only as a product.
Further, this product is exactly equivalent to the product of two simpler square root
functions: η1(α) and η2(α). That is,

γ1γ2 = (α4 + ε2α2 − 1)1/2 = (α2 − α2
1)

1/2(α2 − α2
2)

1/2 = η1η2, (A.2)

and so the branch-points are easily seen to be

α1 = i

√√
ε4 + 4 + ε2

2
, α2 =

√√
ε4 + 4− ε2

2
. (A.3)

In order to facilitate the product factorisation, it is expedient to rearrange the kernel
in terms of the function L(α) where L(α) ∼ 1 as |α| → ∞. Thus,

K(α) =

√
η1η2(1− ν)(3 + ν)(α2 − α2

ed)(α
2 − α2

ev)

2(α2 − α2
1)(α

2 − α2
2)

L(α) (A.4)

where

L(α) =

√
2(α2 − α2

1)(α
2 − α2

2)

(1− ν)(3 + ν)(α2 − α2
ed)(α

2 − α2
ev)

√
1 + α2/(η1η2)

(A.5)

×
{

1 + (1− ν)
2α2

η1η2

− ν2α4

η2
1η

2
2

}
.

Note that the terms preceding L(α) in (A.4) can be factorised by inspection, and the
behaviour of L(α) as |α| → ∞ is expediently chosen to allow it to be factorised using
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Cauchy’s integral formula. Further, L(α) is defined so that it does not have zeros at
α = ±αed or α = ±αev but it does contain branch-points at α1 and α2. In fact, L(α)
is a function of the combined branch-cut term η1η2 (A.2), which conveniently can be
chosen to have finite cuts lying between α2 and α1, and between −α2 and −α1. That
is, for both functions η1 and η2 the upper half plane cuts are chosen to lie along the
straight line that connects the point α2 to α1 and continue into the second quadrant
of the complex plane. Thus, the branch-cuts overlap and lie at an angle ψ to the real
line (see figure 5) where

ψ = π − arctan

( |α1|
α2

)
= π − arctan




√√
ε4 + 4 + ε2

√
ε4 + 4− ε2


 .

(Note that this quantity is not related to the polar angle of section 4.1.) Similarly, the
overlapping lower half plane cuts lie along the line joining −α2 to −α1 and continue
into the fourth quadrant. A consequence of this choice of branch-cuts is that for
quantities such as η1η2 and η1/η2 the overlapping sections of the branch-cuts “cancel”,
and so, as mentioned, these quantities have only finite length cuts lying along the
line segments joining ±α2 and ±α1. Having defined the branch-cuts, the appropriate
sheet of the Riemann surface branches is now chosen such that η1(0) = −iα1 and
η2(0) = −iα2.

α

α2

α1

−α1

−α2

Figure 5: The overlapping branch-cuts for η1, η2 and the path of integration for
P−(α).

Cauchy’s integral formula can now be exploited to obtain the product factors of
L(α). The lower function is defined [14] as

L−(α) = exp

{
− 1

2πi

∫

C

log[L(ζ)]
dζ

ζ − α

}
= exp

{
− 1

2πi
P−(α)

}
, (A.6)

where α lies in the lower half plane and the path of integration is indented above
(below) any singularities on the negative (positive) real line, see figure 5. On de-
forming the path of integration into the upper half plane and noting that there is no
contribution from the arc at infinity, it is found that

P−(α) =

∫ α1

α2

log[g(ζ)]
dζ

ζ − α
, (A.7)
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where g(ζ) = Lu(ζ)/L`(ζ) and the superscripts ` (lower) and u (upper) indicate on
which side of the cut the function must be evaluated. On noting that

η`
2 = −ηu

2 ,

g(ζ) can be expressed as

g(ζ) =

√
η1η2 − α2 {η2

1η
2
2 + 2(1− ν)α2η1η2 − α4ν2}√

η1η2 + α2 {η2
1η

2
2 − 2(1− ν)α2η1η2 − α4ν2} (A.8)

where here and henceforth η2 will be taken to denote ηu
2 . Thus,

K−(α) =

√
(1− ν)(3 + ν)

2
(
√

η1η2)−
(α− αed)(α− αev)

(α− α1)(α− α2)

× exp

{
− 1

2πi

∫ α1

α2

log[g(ζ)]
dζ

ζ − α

}
, (A.9)

where the cut function, with cuts shown in figure 5, is given by

(
√

η1η2)− = ei(ψ/2−π/4)
(
ei(π−ψ)(α− α1)

)1/4 (
ei(π−ψ)(α− α2)

)1/4
. (A.10)

Similarly,

(
√

η1η2)+ = ei(ψ/2−π/4)
(
e−iψ(α + α1)

)1/4 (
e−iψ(α + α2)

)1/4
. (A.11)

Note that

K−(α) ∼
√

(1− ν)(3 + ν)

2
α1/2eiπ/4, α →∞, (A.12)

where the branch-cut for α1/2 lies in the upper half plane, whilst the anti-symmetric
kernel is given by Ka(α) = γ1γ2K(α), and so it follows that

Ka
−(α) = −

√
(1− ν)(3 + ν)

2

(α− αed)(α− αev)(√
η1η2

)
−

exp

{
− 1

2πi

∫ α1

α2

log[g(ζ)]

ζ − α
dζ

}
,

∼
√

(1− ν)(3 + ν)

2
α3/2e3iπ/4, α →∞. (A.13)
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