35 research outputs found

    From Raw Data to FAIR Data: The FAIRification Workflow for Health Research

    Get PDF
    BackgroundFAIR (findability, accessibility, interoperability, and reusability) guidingprinciples seek the reuse of data and other digital research input, output, and objects(algorithms, tools, and workflows that led to that data) making themfindable, accessible,interoperable, and reusable. GO FAIR - a bottom-up, stakeholder driven and self-governedinitiative-defined a seven-step FAIRificationprocessfocusingondata,butalsoindicatingtherequired work for metadata. This FAIRification process aims at addressing the translation ofraw datasets into FAIR datasets in a general way, without considering specific requirementsand challenges that may arise when dealing with some particular types of data.This work was performed in the scope of FAIR4Healthproject. FAIR4Health has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement number 824666

    Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a HighSpeed Solar Wind Stream Observed in September 2014

    Get PDF
    Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvenic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron uxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a highspeed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and spacebased observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefcients employing an empirical model. Observations show a gradual increase of electron uxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower Lshells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfven modes in the magnetospheric nightside sector. The observations agree with the empirical model and are conrmed by phase space density calculations for this global recovery period

    Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High-Speed Solar Wind Stream Observed in September 2014

    Get PDF
    Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground- and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period

    Microstructure of the superior longitudinal fasciculus predicts stimulation-induced interference with on-line motor control.

    No full text
    A cortical visuomotor network, comprising the medial intraparietal sulcus (mIPS) and the dorsal premotor area (PMd), encodes the sensorimotor transformations required for the on-line control of reaching movements. How information is transmitted between these two regions and which pathways are involved, are less clear. Here, we use a multimodal approach combining repetitive transcranial magnetic stimulation (rTMS) and diffusion tensor imaging (DTI) to investigate whether structural connectivity in the 'reaching' circuit is associated to variations in the ability to control and update a movement. We induced a transient disruption of the neural processes underlying on-line motor adjustments by applying 1Hz rTMS over the mIPS. After the stimulation protocol, participants globally showed a reduction of the number of corrective trajectories during a reaching task that included unexpected visual perturbations. A voxel-based analysis revealed that participants exhibiting higher fractional anisotropy (FA) in the second branch of the superior longitudinal fasciculus (SLF II) suffered less rTMS-induced behavioral impact. These results indicate that the microstructural features of the white matter bundles within the parieto-frontal 'reaching' circuit play a prominent role when action reprogramming is interfered. Moreover, our study suggests that the structural alignment and cohesion of the white matter tracts might be used as a predictor to characterize the extent of motor impairments
    corecore