13 research outputs found

    Effects of Voice Pitch on Social Perceptions Vary With Relational Mobility and Homicide Rate

    Get PDF
    Fundamental frequency ( fo) is the most perceptually salient vocal acoustic parameter, yet little is known about how its perceptual influence varies across societies. We examined how fo affects key social perceptions and how socioecological variables modulate these effects in 2,647 adult listeners sampled from 44 locations across 22 nations. Low male fo increased men’s perceptions of formidability and prestige, especially in societies with higher homicide rates and greater relational mobility in which male intrasexual competition may be more intense and rapid identification of high-status competitors may be exigent. High female fo increased women’s perceptions of flirtatiousness where relational mobility was lower and threats to mating relationships may be greater. These results indicate that the influence of fo on social perceptions depends on socioecological variables, including those related to competition for status and mates

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    A multidisciplinary approach to the study of the fluminense vegetation

    No full text
    The fluminense vegetation, more specifically the flora from the Jurubatiba restinga has been investigated by a multidisciplinary team of botanists, chemist, radiobiologist, insect physiologists and geneticist. Vouchers of 564 specimens have been collected, identified, organized in an herbarium, and a database is being build up containing, in addition to classical botanical data, chemical data and information on the potential economic use either for landscape gardening, alternative foods or as medicinal plants. Phytochemical studies of the Guttiferae, Clusia hilariana, yielded oleanolic acid and nemorosone. Their biological activities against the haematophagous insect Rhodnius prolixus vector of Chagas disease have been investigated. Finally, it has been observed that aquatic plants possessed high levels of the natural radionuclide polonium-210, which seems to be originated mainly from soil rather than from atmospheric supply

    Heteroplasmy:Detection, verification and recurrence in baleen whales

    No full text
    Heteroplasmy is defined as the presence of two or more different mitochondrial DNA (mtDNA) genomes in one individual. Heteroplasmy can arise from insertions or deletions (length heteroplasmy) or single nucleotide substitutions (point heteroplasmy). The phenomenon has been widely studied in humans and model species; however, reports from non-model species are rare, possibly because heteroplasmy was undetected or ignored during sequencing. Among cetaceans, a few studies have reported heteroplasmy and speculated on its possible effects, suggesting that heteroplasmy could be rare or simply ignored. The aim of the present study was to assess and confirm point heteroplasmies, as well as to determine their frequency in five baleen whale species. We analyzed 10,748 mtDNA sequence electropherograms of the mitochondrial control region obtained by Sanger sequencing. A pipeline was developed to detect potential heteroplasmy by analyzing chromatogram peak heights. Potential heteroplasmies were subsequently verified experimentally. A total of 7,882 samples were assessed, among which 326 (4,1%) presented potential point heteroplasmy at more than 35 different nucleotide positions. These results indicated that heteroplasmy is more frequent than previously reported. Several heteroplasmies were tracked across multiple generations, providing insights into the introduction of new mtDNA haplotypes. Ignoring heteroplasmy might bias relatedness analyses as well as estimates of genetic diversity and mtDNA mutation rates. Thus, it is extremely important to develop efficient ways to detect and verify heteroplasmy

    Heteroplasmy:Detection, verification and recurrence in baleen whales

    No full text
    Heteroplasmy is defined as the presence of two or more different mitochondrial DNA (mtDNA) genomes in one individual. Heteroplasmy can arise from insertions or deletions (length heteroplasmy) or single nucleotide substitutions (point heteroplasmy). The phenomenon has been widely studied in humans and model species; however, reports from non-model species are rare, possibly because heteroplasmy was undetected or ignored during sequencing. Among cetaceans, a few studies have reported heteroplasmy and speculated on its possible effects, suggesting that heteroplasmy could be rare or simply ignored. The aim of the present study was to assess and confirm point heteroplasmies, as well as to determine their frequency in five baleen whale species. We analyzed 10,748 mtDNA sequence electropherograms of the mitochondrial control region obtained by Sanger sequencing. A pipeline was developed to detect potential heteroplasmy by analyzing chromatogram peak heights. Potential heteroplasmies were subsequently verified experimentally. A total of 7,882 samples were assessed, among which 326 (4,1%) presented potential point heteroplasmy at more than 35 different nucleotide positions. These results indicated that heteroplasmy is more frequent than previously reported. Several heteroplasmies were tracked across multiple generations, providing insights into the introduction of new mtDNA haplotypes. Ignoring heteroplasmy might bias relatedness analyses as well as estimates of genetic diversity and mtDNA mutation rates. Thus, it is extremely important to develop efficient ways to detect and verify heteroplasmy

    Heteroplasmy: Detection, verification and recurrence in baleen whales

    No full text
    Heteroplasmy is defined as the presence of two or more different mitochondrial DNA (mtDNA) genomes in one individual. Heteroplasmy can arise from insertions or deletions (length heteroplasmy) or single nucleotide substitutions (point heteroplasmy). The phenomenon has been widely studied in humans and model species; however, reports from non-model species are rare, possibly because heteroplasmy was undetected or ignored during sequencing. Among cetaceans, a few studies have reported heteroplasmy and speculated on its possible effects, suggesting that heteroplasmy could be rare or simply ignored. The aim of the present study was to assess and confirm point heteroplasmies, as well as to determine their frequency in five baleen whale species. We analyzed 10,748 mtDNA sequence electropherograms of the mitochondrial control region obtained by Sanger sequencing. A pipeline was developed to detect potential heteroplasmy by analyzing chromatogram peak heights. Potential heteroplasmies were subsequently verified experimentally. A total of 7,882 samples were assessed, among which 326 (4,1%) presented potential point heteroplasmy at more than 35 different nucleotide positions. These results indicated that heteroplasmy is more frequent than previously reported. Several heteroplasmies were tracked across multiple generations, providing insights into the introduction of new mtDNA haplotypes. Ignoring heteroplasmy might bias relatedness analyses as well as estimates of genetic diversity and mtDNA mutation rates. Thus, it is extremely important to develop efficient ways to detect and verify heteroplasmy
    corecore