36 research outputs found

    Punctate vascular expression1 is a novel maize gene required for leaf pattern formation that functions downstream of the trans-acting small interfering RNA pathway

    Get PDF
    The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway

    Microdissection of Shoot Meristem Functional Domains

    Get PDF
    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize

    Teaching the Process of Science: Faculty Perceptions and an Effective Methodology

    Get PDF
    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy

    Pulmonary Vaccination as a Novel Treatment for Lung Fibrosis

    Get PDF
    Pulmonary fibrosis is an untreatable, uniformly fatal disease of unclear etiology that is the result of unremitting chronic inflammation. Recent studies have implicated bone marrow derived fibrocytes and M2 macrophages as playing key roles in propagating fibrosis. While the disease process is characterized by the accumulation of lymphocytes in the lung parenchyma and alveolar space, their role remains unclear. In this report we definitively demonstrate the ability of T cells to regulate lung inflammation leading to fibrosis. Specifically we demonstrate the ability of intranasal vaccinia vaccination to inhibit M2 macrophage generation and fibrocyte recruitment and hence the accumulation of collagen and death due to pulmonary failure. Mechanistically, we demonstrate the ability of lung Th1 cells to prevent fibrosis as vaccinia failed to prevent disease in Rag−/− mice or in mice in which the T cells lacked IFN-γ. Furthermore, vaccination 3 months prior to the initiation of fibrosis was able to mitigate the disease. Our findings clearly demonstrate the role of T cells in regulating pulmonary fibrosis as well as suggest that vaccinia-induced immunotherapy in the lung may prove to be a novel treatment approach to this otherwise fatal disease

    Book Review

    No full text

    Transcription of major histocompatibility complex class I (K(b)) and transporter associated with antigen processing 1 and 2 genes is up-regulated with age

    No full text
    The transporter associated with antigen processing 1 and 2 (TAP1 and TAP2) genes belong to the ATP-binding cassette family of transporter genes. They provide peptides necessary for the assembly of major histocompatibility complex (MHC) class I molecules by transporting these peptides into the endoplasmic reticulum. As MHC class I protein expression increases with age, we have explored the effect of age on the transcription of MHC class I genes (K(b)) and TAP1 and TAP2 genes in C57BL/6 mice. Blood and spleen lymphocytes were isolated from mice aged from 3 months to over 24 months. RNA was extracted and mRNA for K(b), TAP1, TAP2 was quantified using slot-blot hybridization followed by densitometry. There was a parallel age-related increase (1·5-fold) in blood lymphocyte mRNA of these genes from 3 months to 21 months. In mice over 24 months old there was a decrease in K(b) and TAP1 mRNA, but an increase in TAP2 mRNA. In spleen lymphocytes an age-related increase in all three mRNA species occurred throughout life. While MHC class I and Tap genes underwent very similar age-related changes, MHC class I mRNA was about 50 times more abundant than either TAP1 or TAP2 mRNA
    corecore