29 research outputs found

    Using regression tree analysis to determine size class intervals and sexual dimorphism in the Morelet's crocodile Crocodylus moreletii

    Get PDF
    Assignment of Morelet's crocodile Crocodylus moreletii individuals into size groups or classes based on ecological and morphological similarities has not yet been associated with species-specific ontogeny related changes. Age or size of first reproductive behavior is not precisely known for C. moreletii, but differences in allometric patterns and relative cranial size between juveniles and adults might be used as an indicator of sexual maturity. In this study, a regression tree analysis was used to investigate the relationship between age and body size in 1266 crocodiles by using both simple and generalized linear models, with gender and origin (captivity or wild) as factors. Total length (TL), snout–vent length (SVL) and cranial length (CL) were used as predictor variables and the logarithm of body mass as the response variable. Four length intervals with well-defined thresholds (514, 899 and 1497 mm of TL) were established using all three predictors (TL, SVL and CL). Relationship between SVL and TL was described, and a strong positive relationship (r2 = 0.98), unaffected by crocodile gender, was observed. The observed CL–TL and CL–SVL relationships were also positive but significantly different between males and females (p < 0.001) and length interval classes (p = 0.01). These results suggest that our estimated size thresholds seem to correspond to important ontogenetic changes in C. moreletii and that sexual maturity is closely related to size in this species, where sexual dimorphism in body length occurs, particularly in large individuals (size group IV)

    A Ks-band-selected catalogue of objects in the ALHAMBRA survey

    Get PDF
    The original ALHAMBRA catalogue contained over 400,000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W)\approx24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (=0.86) and the approximately II-band selection, there is a noticeable bias against red objects at moderate redshift. We avoid this bias by creating a new catalogue selected in the KsK_s band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z>1z>1. We select objects using the KsK_s band images, which reach an approximate AB magnitude limit Ks22K_s \approx 22. We generate masks and derive completeness functions to characterize the sample. We have tested the quality of the photometry and photometric redshifts using both internal and external checks. Our final catalogue includes 95,000\approx 95,000 sources down to Ks22K_s \approx 22, with a significant tail towards high redshift. We have checked that there is a large sample of objects with spectral energy distributions that correspond to that of massive, passively evolving galaxies at z>1z > 1, reaching as far as z2.5z \approx 2.5. We have tested the possibility of combining our data with deep infrared observations at longer wavelengths, particularly Spitzer IRAC data

    Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding

    Get PDF
    The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects

    Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    Get PDF
    [[abstract]]The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n &gt; 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB

    Structural dynamics during laser-induced ultrafast demagnetization

    No full text
    The mechanism underlying femtosecond laser-pulse-induced ultrafast magnetization dynamics remains elusive, despite two decades of intense research on this phenomenon. Most experiments focused so far on characterizing magnetization and charge carrier dynamics, while the first direct measurements of structural dynamics during ultrafast demagnetization were reported only very recently. We here present our investigation of the infrared laser-pulse-induced ultrafast demagnetization process in a thin Ni film, which characterizes simultaneously magnetization and structural dynamics. This is achieved by employing femtosecond time-resolved x-ray resonant magnetic reflectivity (tr-XRMR) as the probe technique. The experimental results reveal unambiguously that the subpicosecond magnetization quenching is accompanied by strong changes in nonmagnetic x-ray reflectivity. These changes vary with reflection angle, and changes up to 30% have been observed. By modeling the x-ray reflectivity of the investigated thin film, we can reproduce these changes by a variation of the apparent Ni layer thickness of up to 1%. Extending these simulations to larger incidence angles, we show that tr-XRMR can be employed to discriminate experimentally between currently discussed models describing the ultrafast demagnetization phenomenon.Funding from the European Community's Seventh Framework Programme under Grant Agreement No. 312284 (CALIPSO Project) is gratefully acknowledged, as well as financial support received from the following agencies: (i) The French “Agence National de la Recherche” (ANR) via the projects UMAMI, ANR-11-LABX-0058_NIE and the EQUIPEX UNION (ANR-10-EQPX-52), and (ii) the CNRS-PICS program
    corecore