307 research outputs found

    Towards a new generation axion helioscope

    Get PDF
    We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV1^{-1} is conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts mam_a of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA

    The International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 1012^{12} GeV1^{-1}, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.Comment: 4 pages, 2 figures. To appear in the proceedings of the 7th Patras Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 201

    CAST constraints on the axion-electron coupling

    Full text link
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission

    CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap

    Get PDF
    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.Comment: 5 pages, 2 figures. Last version uploade

    Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment

    Full text link
    The OPERA long-baseline neutrino-oscillation experiment has observed the direct appearance of ντ\nu_\tau in the CNGS νμ\nu_\mu beam. Two large muon magnetic spectrometers are used to identify muons produced in the τ\tau leptonic decay and in νμCC\nu_\mu^{CC} interactions by measuring their charge and momentum. Besides the kinematic analysis of the τ\tau decays, background resulting from the decay of charmed particles produced in νμCC\nu_\mu^{CC} interactions is reduced by efficiently identifying the muon track. A new method for the charge sign determination has been applied, via a weighted angular matching of the straight track-segments reconstructed in the different parts of the dipole magnets. Results obtained for Monte Carlo and real data are presented. Comparison with a method where no matching is used shows a significant reduction of up to 40\% of the fraction of wrongly determined charges.Comment: 10 pages. Improvements in the tex

    Observation of nu_tau appearance in the CNGS beam with the OPERA experiment

    Get PDF
    The OPERA experiment is searching for nu_mu -> nu_tau oscillations in appearance mode i.e. via the direct detection of tau leptons in nu_tau charged current interactions. The evidence of nu_mu -> nu_tau appearance has been previously reported with three nu_tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth nu_tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analysed events and the low background, nu_mu -> nu_tau oscillations are established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP

    Evidence for νμντ\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the τ\tau lepton in ντ\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ντ\nu_{\tau} candidates with a τ\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third ντ\nu_\tau candidate in the τμ\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 σ\sigma level.Comment: 9 pages, 5 figures, 1 table
    corecore