93 research outputs found

    Ecosystem-based climate change adaptation for Essenvelt, Middelburg, The Netherlands

    Get PDF
    Climate change is an internationally recognised phenomenon generally held accountable for the increasing magnitude of extremes in both climatic events and temperature. With increasing urbanization and the concentration of socio-economic activities in urban areas, the challenge to contend with climate change is particularly pertinent in cities. In response to climate-change impacts, a range of climate-adaptation strategies have been developed to make cities increasingly ‘climate proof’. A qualitative research approach is employed to review climate change, its impacts and some adaptation strategies, focusing on ecosystem-based adaptation strategies from Belgium and The Netherlands and Water-Sensitive Urban Design approaches developed in Australia. The article engages a case study of Essenvelt, Middelburg, The Netherlands, where unanticipated warmer night-time temperatures are a primary concern, related to natural variability, the urban heat island effect and climate change. The article proposes certain adaptation measures for Essenvelt, based on the adaptation strategies reviewed

    Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors

    Get PDF
    Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (“Fungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practices” [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD

    Are urban water bodies really cooling?

    Get PDF
    Small urban water bodies, like ponds or canals, are often assumed to cool their surroundings during hot periods, when water bodies remain cooler than air during daytime. However, during the night they may be warmer. Sufficient fetch is required for thermal effects to reach a height of 1–2 m, relevant for humans. In the ‘Really cooling water bodies in cities’ (REALCOOL) project thermal effects of typical Dutch urban water bodies were explored, using ENVI-met 4.1.3. This model version enables users to specify intensity of turbulent mixing and light absorption of the water, offering improved water temperature simulations. Local thermal effects near individual water bodies were assessed as differences in air temperature and Physiological Equivalent Temperature (PET). The simulations suggest that local thermal effects of small water bodies can be considered negligible in design practice. Afternoon air temperatures in surrounding spaces were reduced by typically 0.2 °C and the maximum cooling effect was 0.6 °C. Typical PET reduction was 0.6 °C, with a maximum of 1.9 °C. Night-time warming effects are even smaller. However, the immediate surroundings of small water bodies can become cooler by means of shading from trees, fountains or water mists, and natural ventilation. Such interventions induce favorable changes in daytime PET.</p

    Trained Immunity or Tolerance: Opposing Functional Programs Induced in Human Monocytes After Engagement of Various Pattern Recognition Receptors

    Get PDF
    Upon priming with Candida albicans or with the fungal cell wall component β-glucan, monocytes respond with an increased cytokine production upon restimulation, a phenomenon termed trained immunity. In contrast, the prestimulation of monocytes with lipopolysaccharide has long been known to induce tolerance. Because the vast majority of commensal microorganisms belong to bacterial or viral phyla, we sought to systematically investigate the functional reprogramming of monocytes induced by the stimulation of pattern recognition receptors (PRRs) with various bacterial or viral ligands. Monocytes were functionally programmed for either enhanced (training) or decreased (tolerance) cytokine production, depending on the type and concentration of ligand they encountered. The functional reprogramming of monocytes was also associated with cell shape, granulocity, and cell surface marker modifications. The training effect required p38- and Jun N-terminal protein kinase (JNK)-mediated mitogen-activated protein kinase (MAPK) signaling, with specific signaling patterns directing the functional fate of the cell. The long-term effects on the function of monocytes were mediated by epigenetic events, with both histone methylation and acetylation inhibitors blocking the training effects. In conclusion, our experiments identify the ability of monocytes to acquire adaptive characteristics after prior activation with a wide variety of ligands. Trained immunity and tolerance are two distinct and opposing functional programs induced by the specific microbial ligands engaging the monocytes

    Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors

    Get PDF
    Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (“Fungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practices” [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD

    FcgammaR expression on macrophages is related to severity and chronicity of synovial inflammation and cartilage destruction during experimental immune-complex-mediated arthritis (ICA)

    Get PDF
    INTRODUCTION: Fcγ receptors (FcγRs) present on cells of the haematopoietic lineage communicate with IgG-containing immune complexes that are abundant in the synovial tissue of patients with rheumatoid arthritis (RA). In mice, three classes of FcγR (RI, RII, and RIII) have been described. Binding of these receptors leads to either activation (FcγRI and RIII) or deactivation (FcγRII) of intracellular transduction pathways. Together, the expression of activating and inhibitory receptors is thought to drive immune-complex-mediated diseases. Earlier studies in our laboratory showed that macrophages of the synovial lining are of utmost importance in the onset and propagation of immune-complex-driven arthritic diseases. Selective depletion of macrophages in the joint downregulated both inflammation and cartilage destruction. As all three classes of FcγR are expressed on synovial macrophages, these cells are among the first that come in contact with immune complexes deposited in the joint. Recently, we observed that when immune complexes were injected into the knee joints of mice, strains susceptible to collagen-type-II arthritis (DBA/1, B10.RIII) developed more severe arthritis than nonsusceptible strains did, or even developed chronic arthritis. One reason why these strains are more susceptible might be their higher levels of FcγRs on macrophage membranes. To test this hypothesis, we investigated the role of FcγRs in inflammation and cartilage damage during immune-complex-mediated arthritis (ICA). First, we studied arthritis and subsequent cartilage damage in mice lacking functional FcγRI and RIII (FcR γ-chain(-/-) mice). Next, DBA/1 mice, which are prone to develop collagen-type-II arthritis (`collagen-induced arthritis'; CIA) and are hypersensitive to immune complexes, were compared with control C57BL/6 mice as regards cartilage damage and the expression and function of FcγRs on their macrophages. AIMS: To examine whether FcγR expression on macrophages is related to severity of synovial inflammation and cartilage destruction during immune-complex-mediated joint inflammation. METHODS: ICA was induced in three strains of mice (FcR γ-chain(-/-), C57BL/6, and DBA/1, which have, respectively, no functional FcγRI and RIII, intermediate basal expression of FcγRs, and high basal expression of FcγRs) by passive immunisation using rabbit anti-lysozyme antibodies, followed by poly-L-lysine lysozyme injection into the right knee joint 1 day later. In other experiments, streptococcal-cell-wall (SCW)- or zymosan-induced arthritis was induced by injecting SCW (25 μg) or zymosan (180 μg) directly into the knee joint. At several time points after arthritis induction, knee joints were dissected and studied either histologically (using haematoxylin/eosin or safranin O staining) or immuno-histochemically. The arthritis severity and the cartilage damage were scored separately on an arbitrary scale of 0-3. FcγRs were immunohistochemically detected using the monoclonal antibody 2.4G2, which detects both FcγRII and RIII. Deposition of IgG and C3c in the arthritic joint tissue was also detected immunohistochemically. Expression of FcγRs by murine peritoneal macrophages was measured using a fluorescence-activated cell sorter (FACS). Peritoneal macrophages were stimulated using heat-aggregated gamma globulins (HAGGs), and production of IL-1 was measured using a bioassay. To assess the levels of IL-1 and its receptor antagonist (IL-1Ra) during arthritis, tissue was dissected and washed in RPMI medium. Washouts were tested for levels of IL-1 and IL-1Ra using radioimmunoassay and enzyme-linked immunosorbent assay. mRNA was isolated from the tissue, and levels of macrophage inflammatory protein (MIP)-2, monocyte chemoattractant protein (MCP)-1, IL-1, and IL-1Ra were determined using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR). RESULTS: ICA induced in knee joints of C57BL/6 mice caused a florid inflammation at day 3 after induction. To investigate whether this arthritis was FcγR-mediated, ICA was induced in FcR γ-chain(-/-) mice, which lack functional FcγRI and RIII. At day3, virtually no inflammatory cells were found in their knee joints. Levels of mRNA of IL-1, IL-1Ra, MCP-1, and MIP-2, which are involved in the onset of this arthritis, were significantly lower in FcR γ-chain(-/-) mice than in control C57BL/6 mice. Levels of IL-1 protein were also measured. At 6 h after ICA induction, FcR γ-chain(-/-) mice and control C57BL/6 mice showed similar IL-1 production as measured by protein level. By 24 h after induction, however, IL-1 production in the FcR γ-chain(-/-) mice was below the detection limit, whereas the controls were still producing a significant amount. To investigate whether the difference in reaction to immune complexes between the DBA/1 and C57BL/6 mice might be due to variable expression of FcγRs in the knee joint, expression in situ of FcγRs in naïve knee joints of these mice was determined. The monoclonal antibody 2.4G2, which detects both FcγRII and RIII, stained macrophages from the synovial lining of DBA/1 mice more intensely than those from C57BL/6 mice. This finding suggests a higher constitutive expression of FcγRs by macrophages of the autoimmune-prone DBA/1 mice. To quantify the difference in FcγR expression on macrophages of the two strains, we determined the occurrence of FcγRs on peritoneal macrophages by FACS analysis. The levels of FcγR expressed by macrophages were twice as high in the DBA/1 mice as in the C57BL/6 mice (mean fluorescence, respectively, 440 ± 50 and 240 ± 30 intensity per cell). When peritoneal macrophages of both strains were stimulated with immune complexes (HAGGs), we found that the difference in basal FcγR expression was functional. The stimulated macrophages from DBA/1 mice had significantly higher IL-1α levels (120 and 135 pg/ml at 24 and 48 h, respectively) than cells from C57BL/6 mice (45 and 50 pg/ml, respectively). When arthritis was induced using other arthritogenic triggers than immune complexes (zymosan, SCW), all the mouse strains tested (DBA/1, FcR γ-chain(-/-), and C57BL/6) showed similar inflammation, indicating that the differences described above are found only when immune complexes are used to elicit arthritis. We next compared articular cartilage damage in arthritic joints of the three mouse strains FcR γ-chain(-/-), C57BL/6 (intermediate basal expression of FcγRs), and DBA/1 (high basal expression of FcγRs). Three indicators of cartilage damage were investigated: depletion of PGs, chondrocyte death, and erosion of the cartilage matrix. At day 3 after induction of ICA, there was no PG depletion in FcR γ-chain(-/-) mice, whereas PG depletion in the matrix of the C57BL/6 mice was marked and that in the arthritic DBA/1 mice was even greater. PG depletion was still massive at days 7 and 14 in the DBA/1 mice, whereas by day 14 the PG content was almost completely restored in knee joints of the C57BL/6 mice. Chondrocyte death and erosion of cartilage matrix, two indicators of more severe cartilage destruction, were significantly higher in the DBA/1 than in the C57BL/6 mice, while both indicators were completely absent in the FcR γ-chain(-/-) mice. Again, when arthritis was induced using other triggers (SCW, zymosan), all strains showed similar PG depletion and no chondrocyte death or matrix erosion. These findings underline the important role of immune complexes and FcγRs in irreversible cartilage damage. DISCUSSION: Our findings indicate that inflammation and subsequent cartilage damage caused by immune complexes may be related to the occurrence of FcγRs on macrophages. The absence of functional FcγRI and RIII prevented inflammation and cartilage destruction after induction of ICA, whereas high basal expression of FcγRs on resident joint macrophages of similarly treated mice susceptible to autoimmune arthritis was correlated with markedly more synovial inflammation and cartilage destruction. The difference in joint inflammation between the three strains was not due to different susceptibilities to inflammation per se, since intra-articular injection of zymosan or SCW caused comparable inflammation. Although extensive inflammatory cell mass was found in the synovium of all strains after intra-articular injection of zymosan, no irreversible cartilage damage (chondrocyte death or matrix erosion) was found. ICA induced in C57BL/6 and DBA/1 mice did cause irreversible cartilage damage at later time points, indicating that immune complexes and FcγRs play an important role in inducing irreversible cartilage damage. Macrophages communicate with immune complexes via Fcγ receptors. Absence of functional activating receptors completely abrogates the synovial inflammation, as was shown after ICA induction in FcR γ-chain(-/-) mice. However, the γ-chain is essential not only in FcγRI and RIII but also for FcεRI (found on mast cells) and the T cell receptor (TcR)-CD3 (Tcells) complex of γδT cells. However, T, B, or mast cells do not play a role in this arthritis that is induced by passive immunisation. Furthermore, this effect was not caused by a difference in clearance of IgG or complement deposition in the tissue. In this study, DBA/1 mice, which are susceptible to collagen-induced autoimmune arthritis and in a recent study have been shown to react hypersensitively to immune complexes, are shown to express higher levels of FcγRs on both synovial and peritoneal macrophages. Because antibodies directed against the different subclasses of FcγR are not available, no distinction could be made between FcγRII and RIII. Genetic differences in DBA/1 mice in genes coding for or regulating FcγRs may be responsible for altered FcγR expression. If so, these mouse strains would have a heightened risk for immune-complex-mediated diseases. To provide conclusive evidence for the roles of the various classes of FcγR during ICA, experiments are needed in which FcγRs are blocked with specific antibodies, or in which knockout mice lacking one specific class of FcγR are used. The only available specific antibody to FcγR (2.4G2) has a stimulatory effect on cells once bound to the receptor, and therefore cannot be used in blocking experiments. Experiments using specific knockout mice are now being done in our laboratory. Macrophages are the dominant type of cell present in chronic inflammation during RA and their number has been shown to correlate well with severe cartilage destruction. Apart from that, in humans, these synovial tissue macrophages express activating FcRs, mainly FcγIIIa, which may lead to activation of these macrophages by IgG-containing immune complexes. The expression of FcRs on the surface of these cells may have important implications for joint inflammation and severe cartilage destruction and therefore FCRs may constitute a new target for therapeutic intervention

    Chemical fingerprints of emotional body odor

    Get PDF
    Chemical communication is common among animals. In humans, the chemical basis of social communication has remained a black box, despite psychological and neural research showing distinctive physiological, behavioral, and neural consequences of body odors emitted during emotional states like fear and happiness. We used a multidisciplinary approach to examine whether molecular cues could be associated with an emotional state in the emitter. Our research revealed that the volatile molecules transmitting different emotions to perceivers also have objectively different chemical properties. Chemical analysis of underarm sweat collected from the same donors in fearful, happy, and emotionally neutral states was conducted using untargeted two-dimensional (GC×GC) coupled with time of flight (ToF) MS-based profiling. Based on the multivariate statistical analyses, we find that the pattern of chemical volatiles (N = 1655 peaks) associated with fearful state is clearly different from that associated with (pleasant) neutral state. Happy sweat is also significantly different from the other states, chemically, but shows a bipolar pattern of overlap with fearful as well as neutral state. Candidate chemical classes associated with emotional and neutral sweat have been identified, specifically, linear aldehydes, ketones, esters, and cyclic molecules (5 rings). This research constitutes a first step toward identifying the chemical fingerprints of emotion.info:eu-repo/semantics/publishedVersio

    Patterns of outdoor exposure to heat in three South Asian cities

    Get PDF
    Low socio-economic status has been widely recognized as a significant factor in enhancing a person's vulnerability to climate change including vulnerability to changes in temperature. Yet, little is known about exposure to heat within cities in developing countries, and even less about exposure within informal neighbourhoods in those countries. This paper presents an assessment of exposure to outdoor heat in the South Asian cities Delhi, Dhaka, and Faisalabad. The temporal evolution of exposure to heat is evaluated, as well as intra-urban differences, using meteorological measurements from mobile and stationary devices (April–September 2016). Exposure to heat is compared between low-income and other neighbourhoods in these cities. Results are expressed in terms of air temperature and in terms of the thermal indices Heat Index (HI), Wet Bulb Globe Temperature (WBGT) and Universal Thermal Climate Index (UTCI) at walking level. Conditions classified as dangerous to very dangerous, and likely to impede productivity, are observed almost every day of the measurement period during daytime, even when air temperature drops after the onset of the monsoon. It is recommended to cast heat warnings in terms of thermal indices instead of just temperature. Our results nuance the idea that people living in informal neighbourhoods are consistently more exposed to heat than people living in more prosperous neighbourhoods. During night-time, exposure does tend to be enhanced in densely-built informal neighbourhoods, but not if the low-income neighbourhoods are more open, or if they are embedded in green/blue areas
    corecore