2,495 research outputs found

    Insights into GABA receptor signalling in TM3 Leydig cells

    Get PDF
    gamma-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A) receptor subunits, but also bind the GABA agonist {[}H-3] muscimol with a binding affinity in the range reported for other endocrine cells (K-d = 2.740 +/- 0.721 nM). However, they exhibit a low B-max value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl- currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Base

    Dynamic screening of a localized hole during photoemission from a metal cluster

    Get PDF
    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time-Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of its trajectory, the photoemitted electron interacts with the cluster electrons that pile up to screen the hole. Within our model, this gives rise to a significant reduction of the energy lost by the photoelectron. Thus, this is a velocity dependent effect that should be accounted for when calculating the average losses suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure

    Wake response to an ocean-feedback mechanism: Madeira Island case study

    Full text link
    This discussion focused on the numerical study of a wake episode. The Weather Research and Forecasting model was used in a downscale mode. The current literature focuses the discussion on the adiabatic dynamics of atmospheric wakes. Changes in mountain height and consequently on its relation to the atmospheric inversion layer should explain the shift in wake regimes: from a 'strong-wake' to a 'weak-wake' scenario. Nevertheless, changes in SST variability can also induce similar regime shifts. Increase in evaporation, contributes to increase convection and thus to an uplift of the stratified atmospheric layer, above the critical height, with subsequent internal gravity wave activity.Comment: Under review proces

    Analytical model for predicting the buckling load of continuous welded rail tracks

    Full text link
    The use of continuous welded rail (CWR) track has solved many of the problems associated with tread surface discontinuities that occur in jointed tracks. However, due to the longitudinal expansion of the rails in CWR tracks being highly constrained, the generated compressive stresses in the rails can cause track buckling in the horizontal plane. Track buckling is a complex phenomenon, in which many factors are involved and around which there is much uncertainty. The objective of this paper is to present an analytical model that can be used to calculate the buckling load of a CWR track. This model accounts for the contributions of base, crib and shoulder ballast and includes the effect of vertical loading on each of these components. Moreover, a parametric study based on this model is developed, in order to understand how and the extent to which the considered factors affect track stability. The results of the study indicate that the characteristics of the existing misalignments in the track are the critical parameters involved in the phenomenon. In addition, maintenance operations that affect the ballast, such as tamping or surfacing, and the dimensions and material of the track sleepers are also important factors.Navarro Martinez, JI.; Villalba Sanchis, I.; Martínez Fernández, P.; Insa Franco, R. (2015). Analytical model for predicting the buckling load of continuous welded rail tracks. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 229(5):542-552. doi:10.1177/0954409713518039S5425522295Kerr, A. D. (1978). Analysis of thermal track buckling in the lateral plane. Acta Mechanica, 30(1-2), 17-50. doi:10.1007/bf01177436Grissom, G. T., & Kerr, A. D. (2006). Analysis of lateral track buckling using new frame-type equations. International Journal of Mechanical Sciences, 48(1), 21-32. doi:10.1016/j.ijmecsci.2005.09.006Le Pen, L. M., & Powrie, W. (2011). Contribution of Base, Crib, and Shoulder Ballast to the Lateral Sliding Resistance of Railway Track: A Geotechnical Perspective. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(2), 113-128. doi:10.1177/095440971039709

    Simulation of the evolution of floor covering ceramic tiles during the firing

    Get PDF
    In the context of the firing of ceramic tiles the problem of simulating the final shape of the body is relevant because several defects can occur and the tile can be rejected if the conditions of the firing are inadequate for the geometry and materials of the tile -- The existing literature on this problem indicates that previous works present limitations in aspects such as not using a model characteristic of ceramics at high temperatures and oversimplifying the problem -- As a response to such shortcomings, this article presents a simulation with a 3-dimensional Norton’s model, which overcomes the difficulties because it is characteristic of ceramics at high temperatures -- The results of our simulated experiments show advantages with respect to the identification of the mechanisms that contribute to the final shape of the body -- Our work is able to divide the history of temperatures in stages where the evolution of the thermal, elastic and creep deformations is simplified and meaningful -- That is achieved because our work found that curvature is the most descriptive parameter of the simulation, the most important contribution of this article -- Future work is to be realized in the creation of a model that takes into account that the shrinkage is dependent on the history of temperatures -- The main shortcoming of the paper is the lack of physical experiments to corroborate the simulation

    A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians

    Get PDF
    Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure

    Full text link
    We have used a Hartree-type electron-helium potential together with a density functional description of liquid 4^4He and 3^3He to study the explosion of electron bubbles submitted to a negative pressure. The critical pressure at which bubbles explode has been determined as a function of temperature. It has been found that this critical pressure is very close to the pressure at which liquid helium becomes globally unstable in the presence of electrons. It is shown that at high temperatures the capillary model overestimates the critical pressures. We have checked that a commonly used and rather simple electron-helium interaction yields results very similar to those obtained using the more accurate Hartree-type interaction. We have estimated that the crossover temperature for thermal to quantum nucleation of electron bubbles is very low, of the order of 6 mK for 4^4He.Comment: 22 pages, 9 figure

    Cartilage restoration of patellofemoral lesions: a systematic review

    Get PDF
    Purpose This study aimed to systematically analyze the postoperative clinical, functional, and imaging outcomes, complications, reoperations, and failures following patellofemoral cartilage restoration surgery. Methods This review was conducted according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PubMed, EMBASE, and Cochrane Library databases were searched up to August 31, 2018, to identify clinical studies that assessed surgical outcomes of patellofemoral cartilage restoration surgery. The Methodological Index for Non-Randomized Studies (MINORS) was used to assess study quality. Results Forty-two studies were included comprising 1,311 knees (mean age of 33.7 years and 56% males) and 1,309 patellofemoral defects (891 patella, 254 trochlear, 95 bipolar, and 69 multiple defects, including the patella or trochlea) at a mean follow-up of 59.2 months. Restoration techniques included autologous chondrocyte implantation (56%), particulated juvenile allograft cartilage (12%), autologous matrix-induced chondrogenesis (9%), osteochondral autologous transplantation (9%), and osteochondral allograft transplantation (7%). Significant improvement in at least one score was present in almost all studies and these surpassed the minimal clinically important difference threshold. There was a weighted 19%, 35%, and 6% rate of reported complications, reoperations, and failures, respectively. Concomitant patellofemoral surgery (51% of patients) mostly did not lead to statistically different postoperative outcomes. Conclusion Numerous patellofemoral restoration techniques result in significant functional improvement with a low rate of failure. No definitive conclusions could be made to determine the best surgical technique since comparative studies on this topic are rare, and treatment choice should be made according to specific patient and defect characteristics
    corecore