96 research outputs found

    Main results of the Ouabain and Adducin for Specific Intervention on Sodium in Hypertension Trial (OASIS-HT): a randomized placebo-controlled phase-2 dose-finding study of rostafuroxin

    Get PDF
    Background. The Ouabain and Adducin for Specific Intervention on Sodium in Hypertension (OASIS-HT) Trial was a phase 2 dose-finding study of rostafuroxin, a digitoxygenin deivative, which selectively antagonizes the effects of endogenous ouabain (EO) on Na+,K+-ATPase and mutated adducin. Rostafuroxin lowered blood pressure (BP) in some animal models and in humans. Methods. OASIS-HT consisted of 5 concurrently running double-blind cross-over studies. After 4 weeks without treatment, 435 patients with uncomplicated systolic hypertension (140-169 mm Hg) were randomized to rostafuroxin (0.05, 0.15, 0.5, 1.5 or 5.0 mg/d) or matching placebo, each treatment period lasting 5 weeks. The primary endpoint was the reduction in systolic office BP. Among the secondary endpoints were diastolic office BP, 24 h ambulatory BP, plasma EO concentration and renin activity, 24-h urinary sodium and aldosterone excretion, and safety. ANOVA considered treatment sequence (fixed effect), subjects nested within sequence (random), period (fixed), and treatment (fixed). Results. Among 410 analyzable patients (40.5% women; mean age, 48.4 years), the differences in the primary endpoint (rostafuroxin minus placebo) ranged from -0.18 mm Hg (P=0.90) on 0.15 mg/d rostafuroxin to 2.72 mm Hg (P=0.04) on 0.05 mg/d. In the 5 dosage arms combined, the treatment effects averaged 1.30 mm Hg (P=0.03) for systolic office BP; 0.70 mm Hg (P=0.08) for diastolic office BP; 0.36 mm Hg (P=0.49) for 24-h systolic BP; and 0.05 mm Hg (P=0.88) for 24-h diastolic BP. In the 2 treatment groups combined, systolic (-1.36 mm Hg) and diastolic (-0.97 mm Hg) office BPs decreased from week 5 to 10 (P for period effect ≀=0.028), but carry-over effects were not significant (P≄=0.11). All other endpoints were not different on rostafuroxin and placebo. Minor side-effects occurred with similarly low frequency on rostafuroxin and placebo. Conclusions. In 5 concurrently running double-blind cross-over studies rostafuroxin did not reduce BP at any dose. Trial Registration: NCT00415038 http://www.clinicaltrials.gov)

    Age-Specific Epigenetic Drift in Late-Onset Alzheimer's Disease

    Get PDF
    Despite an enormous research effort, most cases of late-onset Alzheimer's disease (LOAD) still remain unexplained and the current biomedical science is still a long way from the ultimate goal of revealing clear risk factors that can help in the diagnosis, prevention and treatment of the disease. Current theories about the development of LOAD hinge on the premise that Alzheimer's arises mainly from heritable causes. Yet, the complex, non-Mendelian disease etiology suggests that an epigenetic component could be involved. Using MALDI-TOF mass spectrometry in post-mortem brain samples and lymphocytes, we have performed an analysis of DNA methylation across 12 potential Alzheimer's susceptibility loci. In the LOAD brain samples we identified a notably age-specific epigenetic drift, supporting a potential role of epigenetic effects in the development of the disease. Additionally, we found that some genes that participate in amyloid-ÎČ processing (PSEN1, APOE) and methylation homeostasis (MTHFR, DNMT1) show a significant interindividual epigenetic variability, which may contribute to LOAD predisposition. The APOE gene was found to be of bimodal structure, with a hypomethylated CpG-poor promoter and a fully methylated 3â€Č-CpG-island, that contains the sequences for the Δ4-haplotype, which is the only undisputed genetic risk factor for LOAD. Aberrant epigenetic control in this CpG-island may contribute to LOAD pathology. We propose that epigenetic drift is likely to be a substantial mechanism predisposing individuals to LOAD and contributing to the course of disease

    The Promoter of Rv0560c Is Induced by Salicylate and Structurally-Related Compounds in Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a major global health threat. During infection, bacteria are believed to encounter adverse conditions such as iron depletion. Mycobacteria synthesize iron-sequestering mycobactins, which are essential for survival in the host, via the intermediate salicylate. Salicylate is a ubiquitous compound which is known to induce a mild antibiotic resistance phenotype. In M. tuberculosis salicylate highly induces the expression of Rv0560c, a putative methyltransferase. We identified and characterized the promoter and regulatory elements of Rv0560c. PRv0560c activity was highly inducible by salicylate in a dose-dependent manner. The induction kinetics of PRv0560c were slow, taking several days to reach maximal activity, which was sustained over several weeks. Promoter activity could also be induced by compounds structurally related to salicylate, such as aspirin or para-aminosalicylic acid, but not by benzoate, indicating that induction is specific to a structural motif. The −10 and −35 promoter elements were identified and residues involved in regulation of promoter activity were identified in close proximity to an inverted repeat spanning the −35 promoter element. We conclude that Rv0560c expression is controlled by a yet unknown repressor via a highly-inducible promoter

    Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children

    Get PDF
    Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility

    Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    Get PDF
    BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies

    Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A

    Get PDF
    INTRODUCTION: This study was designed to determine if and how a non-toxic, naturally occurring bioflavonoid, galangin, affects proliferation of human mammary tumor cells. Our previous studies demonstrated that, in other cell types, galangin is a potent inhibitor of the aryl hydrocarbon receptor (AhR), an environmental carcinogen-responsive transcription factor implicated in mammary tumor initiation and growth control. Because some current breast cancer therapeutics are ineffective in estrogen receptor (ER) negative tumors and since the AhR may be involved in breast cancer proliferation, the effects of galangin on the proliferation of an ER(-), AhR(high )line, Hs578T, were studied. METHODS: AhR expression and function in the presence or absence of galangin, a second AhR inhibitor, α-naphthoflavone (α-NF), an AhR agonist, indole-3-carbinol, and a transfected AhR repressor-encoding plasmid (FhAhRR) were studied in Hs578T cells by western blotting for nuclear (for instance, constitutively activated) AhR and by transfection of an AhR-driven reporter construct, pGudLuc. The effects of these agents on cell proliferation were studied by (3)H-thymidine incorporation and by flow cytometry. The effects on cyclins implicated in mammary tumorigenesis were evaluated by western blotting. RESULTS: Hs578T cells were shown to express high levels of constitutively active AhR. Constitutive and environmental chemical-induced AhR activity was profoundly suppressed by galangin as was cell proliferation. However, the failure of α-NF or FhAhRR transfection to block proliferation indicated that galangin-mediated AhR inhibition was either insufficient or unrelated to its ability to significantly block cell proliferation at therapeutically relevant doses (IC(50 )= 11 ΌM). Galangin inhibited transition of cells from the G(0)/G(1 )to the S phases of cell growth, likely through the nearly total elimination of cyclin D3. Expression of cyclins A and E was also suppressed. CONCLUSION: Galangin is a strong inhibitor of Hs578T cell proliferation that likely mediates this effect through a relatively unique mechanism, suppression of cyclin D3, and not through the AhR. The results suggest that this non-toxic bioflavonoid may be useful as a chemotherapeutic, particularly in combination with agents that target other components of the tumor cell cycle and in situations where estrogen receptor-specific therapeutics are ineffective

    Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection

    No full text
    BACKGROUND Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. METHODS We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. RESULTS In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, −10.1 percentage points; 95% confidence interval [CI], −15.9 to −4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, −9.9 percentage points; 95% CI, −15.5 to −4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, −11.6 percentage points; 95% CI, −17.4 to −5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, −10.7 percentage points; 95% CI, −16.4 to −5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. CONCLUSIONS Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239.

    LRRK2 Biology from structure to dysfunction: research progresses, but the themes remain the same

    Get PDF
    Since the discovery of leucine-rich repeat kinase 2 (LRRK2) as a protein that is likely central to the aetiology of Parkinson's disease, a considerable amount of work has gone into uncovering its basic cellular function. This effort has led to the implication of LRRK2 in a bewildering range of cell biological processes and pathways, and probable roles in a number of seemingly unrelated medical conditions. In this review we summarise current knowledge of the basic biochemistry and cellular function of LRRK2. Topics covered include the identification of phosphorylation substrates of LRRK2 kinase activity, in particular Rab proteins, and advances in understanding the activation of LRRK2 kinase activity via dimerisation and association with membranes, especially via interaction with Rab29. We also discuss biochemical studies that shed light on the complex LRRK2 GTPase activity, evidence of roles for LRRK2 in a range of cell signalling pathways that are likely cell type specific, and studies linking LRRK2 to the cell biology of organelles. The latter includes the involvement of LRRK2 in autophagy, endocytosis, and processes at the trans-Golgi network, the endoplasmic reticulum and also key microtubule-based cellular structures. We further propose a mechanism linking LRRK2 dimerisation, GTPase function and membrane recruitment with LRRK2 kinase activation by Rab29. Together these data paint a picture of a research field that in many ways is moving forward with great momentum, but in other ways has not changed fundamentally. Many key advances have been made, but very often they seem to lead back to the same places

    The role of the aryl hydrocarbon receptor in normal and malignant B cell development

    Get PDF

    Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis

    Full text link
    • 

    corecore