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Abstract The aryl hydrocarbon receptor (AhR) is a ligand-
activated transcription factor historically studied for its role
in environmental chemical-mediated toxicity and carcinoge-
nicity. In the last 5 years, however, it has become clear that
the AhR, presumably activated by endogenous ligand(s),
plays an important role in immune system development
and function. Other articles in this edition summarize AhR
function during T cell and antigen-presenting cell develop-
ment and function, including the effects of AhR activation on
dendritic cell function, T cell skewing, inflammation, and
autoimmune disease. Here, we focus on AhR expression and
function during B cell differentiation. Studies exploiting
immunosuppressive environmental chemicals to probe the
role of the AhR in humoral immunity are also reviewed to
illustrate the multiple levels at which a “nominally activated”
AhR could control B cell differentiation from the hemato-
poietic stem cell through the pro-B cell, mature B cell, and
antibody-secreting plasma cell stages. Finally, a putative role
for the AhR in the basic biology of B cell malignancies,
many of which have been associated with exposure to envi-
ronmental AhR ligands, is discussed.
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Introduction

The study of the aryl hydrocarbon receptor (AhR), a ligand-
activated transcription factor, has come a long way. For many
years, analysis of AhR function and activity was the purview
solely of toxicologists interested in understanding how environ-
mental chemicals are “sensed” by biological organisms. With
regard to the immune system in particular, immunotoxicologists
focused on a set of environmentally common, immunosuppres-
sive chemicals including dioxins, most notably 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated biphenyls
(PCBs), and polycyclic aromatic hydrocarbons (PAHs). These
studies, in essence, exploited environmental chemicals as probes
of biological systems to understand how the AhR functions and
to begin to reveal for what purpose this evolutionarily conserved
receptor/transcription factor exists. These studies were of enor-
mous value since they provided a scaffold on which to build
theories of the “nominal” function of the AhR. They also sug-
gested that, at various points in B cell development and differ-
entiation, B cells themselves, or stromal cells on which B cells
depend for developmental signals, express AhR and serve as the
immediate targets of endogenous or exogenous AhR ligands.
Indeed, analysis of gene expression profiles in a panel of puri-
fied, developmentally defined normal murine B cells [1] dem-
onstrates a hierarchy of AhR expression during B cell develop-
ment (Fig. 1). Bone marrow pro- and pre-B cells express little or
no AhR mRNA. In contrast, splenic transitional B cells,
representing cells recently activated during clonal selection, have
elevated AhR levels. Follicular, marginal zone, or germinal cen-
ter B cells and plasmablasts express modest but variable AhR
levels. Interestingly, plasma cells express high AhR levels,
suggesting a role for the AhR in plasma cell development and/or
function. This issue will be readdressed later in this manuscript.

Here, we summarize representative studies that illustrate the
multiple levels at which the AhR may contribute to B cell
development and function. We begin with early studies that
employed either in vivo models or complex in vitro systems

This article is a contribution to the special issue on Roles of Aryl
Hydrocarbon Receptor in Controlling Immunity - Guest Editors: C. Pot,
V. Kuchroo and F. Quintaña

D. H. Sherr (*)
Department of Environmental Health, Boston University School
of Public Health, 72 East Concord Street (R-408),
Boston, MA 02118, USA
e-mail: dsherr@bu.edu

S. Monti
Division of Computational Biomedicine, Boston University School
of Medicine, Boston, MA, USA

Semin Immunopathol (2013) 35:705–716
DOI 10.1007/s00281-013-0390-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191359622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


consisting of cocultures of B cells and cells from the lymphoid
microenvironment. We continue with models using B cell lines
or purified B cells to assess the role of the AhR in activated B
cell and plasma cell differentiation and in antibody production
and conclude with a discussion of the likely role of the AhR in
B cell malignancies.

Environmental chemicals as probes for AhR control of B
cell development and function in vivo or in complex
organ culture systems

Early studies that evaluated the mechanisms bywhich dioxins,
PAHs, and PCBs mediate immunosuppression demonstrated
that these environmental AhR ligands suppress immunity by
compromising virtually every stage of lymphocyte develop-
ment, activation, and effector function, implying that the AhR
plays an important role at several levels of B cell differentia-
tion. For example, halogenated aromatic hydrocarbons were
shown to suppress B and T cell development in primary
lymphoid organs and to compromise antibody responses
in vivo and in organ cultures [2–9]. TCDD, the quintessential
high-affinity AhR ligand, was shown to be particularly

immunosuppressive, significantly inhibiting lymphocyte de-
velopment in vivo at doses in the nanograms per kilogram
range [10]. For example, administration of 10–100 ng/kg
TCDD resulted in a significant increase in mortality after
influenza virus infection [11–14] and weakened memory re-
sponses [15]. At slightly higher doses (100–1,000 ng/kg),
TCDD induced thymic atrophy [16–18], reduced resistance
to parasites [19], and suppressed humoral responses in an
AhR-dependent fashion [9, 20, 21]. The ability of AhR bind-
ing, but not nonbinding TCDD congeners, to affect the sup-
pression of B cell responses and the relative resistance of
lymphocytes generated from mice expressing low-affinity
AhR (AhRd) to TCDD [19] confirmed that TCDD-induced
inhibition of humoral responses is AhR mediated.

PAHs and PCBs were also shown to suppress B cell re-
sponses in vivo, although likely through somewhat different
mechanisms than TCDD. For example, the prototypic PAHs
and AhR ligands, 7,12-dimethylbenz[a]anthracene and
benzo[a]pyrene (B[a]P), suppressed in vivo humoral immune
responses, and this immunosuppression was blocked by the
addition of the partial AhR agonist/AhR inhibitor α-
naphthoflavone [22, 23]. PAHs also decreased splenic B lym-
phocyte numbers and reduced the number of antigen-specific
effector B cells [24–26].

Similarly, the halogenated hydrocarbons, 3,3′,4,4′-
tetrachlorobiphenyl and 2,3,3′,4,4′,5-hexachlorobiphenyl,
suppressed antibody responses to challenge with lipopolysac-
charide (LPS) or sheep red blood cells [27, 28]. At least some
of this apparent suppression of B cell differentiation induced
by PAHs and PCBs was dependent on the degree to which the
AhR ligand could be metabolized [22, 23, 29]. This conclusion
still has relevance to AhR function, since the activation of the
AhR regulates the transcription of a battery of P450 genes
(CYP1A1, CYP1A2, and CYP1B1) critical to oxidative, phase
I metabolism of environmental or endogenous compounds [30,
31]. Furthermore, the fact that all of these outcomes were AhR
dependent suggested that the AhR is expressed in multiple
components of the immune system and, therefore, is likely to
play a role in the development of mature B cell responses.

Since developing biological systems are more sensitive to
environmental stressors than mature systems, one might predict
that developing B cells would be more sensitive to AhR ligands
than mature, antibody-secreting B lineage cells. Model systems
of B cell development involving cultures of bone marrow cells
containing both B lineage cells and bone marrow stromal cells
(e.g.,Whitlock/Witte cultures) were used to test this hypothesis.
Since bone marrow B cells are poised to undergo clonal dele-
tion in response to self-antigen [32, 33], it was predicted that
these cells would have a low threshold of apoptosis induction in
response to AhR ligands. Indeed, in long-term Whitlock/Witte
cultures of primary bone marrow cells, relatively low PAH
doses (10 nM) rapidly induced apoptosis in B220+/CD43−/sIg−

pre-B cells (B cell fractionD) or in a bonemarrow–stromal cell-

AhR Expression

Fig. 1 Relative AhR mRNA expression in purified subpopulations of
murine B cells. Microarray data were generated by Green et al. [1] from
murine B cells sorted by flow cytometry based on B developmental
stage-specific surface antigens. Expression levels of the AhR transcript
within the listed differentiation stages was extracted from [1] and the
corresponding distributions summarized and displayed as 'box-and-
whiskers' plots (with the bottom and the top of the box corresponding
to the first and third quartiles, the thick band inside the box indicating
the median, and the end of the 'whiskers' extending to 1.5 times the
interquartile range in both directions)
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dependent B220+/CD43+ primary pro/pre-B cell line (BU-11)
(B cell fraction B/C) [4, 5]. That the AhR was required for
PAH-mediated apoptosis induction was supported by the abil-
ity of α-naphthoflavone or galangin, two partial AhR agonists
(effective antagonists in the presence of a higher-affinity AhR
ligand), to block apoptosis [4, 34]. Studies on apoptosis sig-
naling pathways indicated: (1) PAH-induced downregulation
of the anti-apoptotic NF-κB subunits Rel A and c-Rel as well
as the anti-apoptotic NF-κB gene target c-myc [35, 36], (2)
robust induction of the intrinsic apoptosis pathway involving
cytochrome c release from mitochondria but not a mitochon-
drial membrane depolarization, (3) activation of APAF1 and
formation of the apoptosome, (4) triggering of a caspase-8-
dependent positive feedback loop, and (5) activation of exe-
cutioner caspase-3 [37–39]. Interestingly, physical contact
between the culture dish-adherent bone marrow stromal cells
and stromal cell-adherent pro/pre-B cells was required for
PAH-induced apoptosis [38], and treatment of pro/pre-B cells
in the absence of stromal cells but in the presence of support-
ive IL-7 failed to induce B cell death [5, 40]. These results
indicated that pro/pre-B cell apoptosis is the result of a “gain
of function” as opposed to, for example, the loss of the
production by stromal cells of cytokines critical to B cell
survival. Surprisingly, murine bone marrow stromal cells,
but not pro- or pre-B cells, were shown to express AhR [4,
5]. These data are consistent with microarray results in which
little or no AhR mRNAwas detected at the pro- or pre-B cell
stage (Fig. 1). Furthermore, PAHs induced bone marrow B
cell apoptosis in cocultures of primary stromal cells from
AhR+/+ but not from AhR−/− mice [40]. These results indicate
that stromal cells are a direct target of PAH and suggest that
stromal cells deliver a cell contact-dependent “death signal” to
adjacent pro/pre-B cells. Since bone marrow stromal cells
express a functional AhR and since several hematopoietic cell
types depend on these cells for growth and differentiation
signals, it seems likely that AhR activity in the bone marrow
microenvironment contributes, in an as yet undetermined
manner, to the development of several hematopoietic lineages.
AhR expression in stromal cells also suggests the possibility
that aberrant AhR activation in the bone marrow microenvi-
ronment, for example by environmental ligands, contributes to
the development of B cell malignancies that originate in the
bone marrow, e.g., multiple myeloma, a disease already asso-
ciated with exposure to environmental AhR ligands (see the
succeeding paragraphs).

The failure of poorly metabolized AhR ligands to induce
pre-B cell apoptosis [41], and a requirement for AhR-
dependent CYP1B1 expression in bone marrow stromal cells
for PAH-induced bone marrow B cell apoptosis [42, 43],
indicated that AhR activation alone is not sufficient to induce
B cell apoptosis and suggested that AhR-regulated PAH
metabolism is required for the induction of an apoptosis
signal. Indeed, the addition of PAH metabolites to bone

marrow cultures obviated the need for AhR+ stromal cells
for apoptosis induction in bone marrow B cells [41, 43].
Interestingly, stromal cell-derived PAH metabolites were
shown to be transferred from the stromal cells to stromal
cell-adherent bone marrow B cells by a unique mechanism,
i.e., exchange of membranes between the two cell types
(trogocytosis) [38]. The predicted sensitivity of developing
B cells was supported by the failure of bone marrow stromal
cells to exchange membranes with or to induce apoptosis in
mature B cells or T cells, neither of which undergo apoptosis
in response to PAH treatment even in the presence of stromal
cells [38]. Collectively, these studies emphasize the depen-
dence of early B cells on their stromal microenvironment and
indicate that the AhR may control early B cell development
indirectly by altering the bone marrow milieu. The demon-
stration of aberrations in bone marrow B cell development in
AhR−/− mice is consistent with this model [8].

A note of caution is required in interpreting experiments
with exogenous sources of AhR ligands. It is well
established that different AhR ligands induce different out-
comes in a tissue-specific and context-specific manner. Out-
comes with TCDD may or may not exactly replicate out-
comes with endogenous AhR ligands. Therefore, studies
utilizing any surrogate AhR ligand can only demonstrate
the presence of a functional AhR and suggest, but not prove,
the nature of the AhR response to other ligands, including the
response to endogenous ligands made either by the B lineage
cell itself or its microenvironment.

Environmental chemicals as probes for AhR control of B
cell development and function in clonal or purified B cell
model systems

While the studies described previously were important for
assessing AhR-mediated events in vivo or in systems
designed to model interactions between developing B cells
and their microenvironment, they did not determine if AhR
ligands directly affect AhR+ mature B cells and, by infer-
ence, if the AhR plays a significant role in intracellular B cell
signaling. In this vein, purified peripheral human B cells
were isolated to assess AhR expression levels and to deter-
mine if mature B cells are affected by AhR engagement.
Consistent with microarray data from purified murine B cell
populations (Fig. 1), resting human B cells were shown to
express relatively low AhR levels [44]. However, activation
with CpG or CD40 ligand, surrogates for stimuli invoked
during innate and adaptive immune responses, respectively,
profoundly upregulated AhR mRNA and protein [44]. IL-4
treatment alone induced AhR expression in both murine and
human B cells through a STA6-dependent pathway [45].
LPS or PMA+ionophore activation of murine splenic B cells
similarly increased AhR and ARNT expression [46] and
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rendered activated B cells more sensitive to AhR ligands than
resting B cells [19, 47, 48]. AhR nuclear translocation, constitu-
tive DNA binding, and induction of the AhR target gene
CYP1A1 in CpG-stimulated or CD40 ligand-stimulated human
B cells [44], in PMA+ionophore-induced, and in IL-4-activated
murine splenic B cells [47] suggested the presence of endoge-
nous AhR ligands that drive AhR signaling in cultures of acti-
vated B cells. Inhibition of AhR activity by ectopic expression of
an AhR repressor-encoding gene (AhRR) inhibited the prolifer-
ation of CpG-activated or CD40 ligand-activated human B cells
(unpublished), suggesting that the AhR contributes to activated
B cell proliferation. These results are consistent with those
obtained in AhR−/− mice in which deficiencies in the accumula-
tion of mature splenic lymphocytes, as well as peritoneal CD5+

B-1 cells, were noted [49]. A role for the AhR in B cell growth is
consistent with studies performed with other cell types in which
constitutively active AhR was shown to regulate the cell cycle
[50–52]. In this context, “constitutively active” is operationally
defined as AhR continuously activated by endogenous ligand(s).
Dimerization of the AhR with Rb, E2F [53–56], Rel A [57, 58],
or Rel B [59] suggests some mechanisms through which the
AhR could influence B cell growth. These findings also suggest
a possible role for the AhR in regulating apoptosis in B cells.
Indeed, at least one study demonstrated that transformed human
B lymphoma cells undergo apoptosis on exposure to PAH [60].
Other studies have implicated theAhR in the control of apoptosis
in other cell types [61–64].

Microarray studies demonstrate relatively high AhR levels
in murine plasma cells (Fig. 1). In order to determine if the
AhR plays a role in the differentiation of human B cells into
plasma cells, we developed an in vitro system in which up to
40 % of CD40 ligand-activated, AhRhigh human B cells could
be induced to differentiate into plasma cells in the absence of
feeder cells [65]. Since differentiation could be induced even
when cell growth was blocked with low-level irradiation, the
effects of AhR activation on differentiation and cell growth
could be separated. In this system, AhR hyperactivation with
B[a]P, a prototypic environmental PAH/AhR ligand, signifi-
cantly blocked CD40 ligand-driven and cytokine-driven dif-
ferentiation into CD138+ plasma cells in the presence or
absence of cell growth without affecting cell viability [65].
As with the cocultures of bone marrow stromal cells and pre-
or pro/pre-B cells, AhR-regulated metabolism of the parent
PAH was required for the inhibition of plasma cell formation.

The contribution of theAhR to antibody secretionwas studied
extensively in a CD5+murine B cell lymphoma line (CH12.LX).
In early studies, it was shown that hyperactivation of the AhR
with TCDD alters the ability of these AhR+ cells to produce
antibody in response to LPS by binding to and inhibiting the
transcription of the 3′ alpha immunoglobulin heavy chain gene
[66–71]. Inhibition of antibody production was not seen in AhR−

BCL-1 B cells [72]. AP1 (c-Jun), a component of the LPS-
activated TLR-4 signaling pathway [73], also appeared to be

targeted since its expression and functionwere downregulated by
TCDD in AhR+ CH12.LX, but not in AhR− BCL-1, cells [72].
Follow-up studies further implicated the AhR in B cell differen-
tiation by demonstrating that hyperactivated AhR decreases
Blimp-1 expression and binding to the PAX5 gene promoter
[66]. The decrease in Prdm1 (Blimp-1) transcription appears to
be tied to the aforementioned decrease in AP1 since TCDD
treatment decreased AP1 binding to Prdm1 [66]. Prdm1
transrepression may also be linked to an AhR-dependent
transactivation of Bach2, a Prdm1 repressor [74]. That is,
TCDD-activated AhR binds to a cognate site in the first intron
of Bach2, increasing Bach2 expression and binding to the Maf
elements in Prdm1 [74]. This circuit of transcription factors
controlling B/plasma cell differentiation is summarized in Fig. 2.

These comprehensive studies illustrate the intersection of
AhR signaling with several interconnecting pathways of B
cell differentiation and effector function. Apropos of this, it
has been postulated [75] that the AhR could alter B cell
function by inhibiting antibody production to a level dictated
by the degree of AhR activation and/or by interference with
the “bi-stable switch circuit” involving Bcl6, Blimp-1,
PAX5, and Bach2 and known to control an all-or-none
cellular decision to differentiate from activated B cell into
antibody-secreting plasma cell [76, 77] (Fig. 2). The dem-
onstration that the AhR directly binds to the 3′ alpha Ig heavy
chain promoter [66–71] suggests a mechanism for the former
possibility, while AhR control of AP1 [72], Prdm1 [66], and
Bach2 transcription [74] is consistent with the latter. To
distinguish between these two, non-mutually exclusive
models, Zhang et al. performed an elegant study in which
the propensity for LPS to induce antibody production and/or
an all-or-none commitment to generating plasma cells in the

Prdm1 
(Blimp-1)

AP1

Plasma cell 

differentiation

Pax5

(BSAP)

Bach2

XBP1

AhR

Bcl6

Antibody

AhR

Fig. 2 AhR interactions with B cell differentiation decisions. A “bi-
stable circuit” controls the decision of activated B cells to differentiate
into antibody-secreting plasma cells. The consensus “all-or-none”
switching pathway involves five interacting transcription factors: Prdm
(encoding Blimp-1), AP1, Bach2, Pax5 (BSAP), Bcl6, and XBP1. The
AhR has been shown to suppress the transcription of AP1, Prdm1, and
IgM while enhancing the transcription of Bach2
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presence or absence of TCDD was evaluated [75]. Using a
combination of computational biology and flow cytometric
analysis of LPS-induced antibody production and B cell
terminal differentiation, it was concluded that TCDD-
induced suppression of the IgM response occurs as a binary
function, i.e., TCDD reduces the number of IgM-secreting
cells in a dose-dependent manner in an “all-or-none” re-
sponse rather than by proportionally decreasing the amount
of antibody produced by any given plasma cell [75].

A more global analysis of potential targets of the AhR
in TCDD-treated, LPS-activated CH12LX B lymphoma
cells revealed a number of potential interactions between
the AhR and genes critical to B cell development and
function [78]. In this study, 1,893 regions, 1,035 of
which mapped to within 10 kb of a known gene,
exhibited increased AhR binding after TCDD treatment.
These identified regions were then compared to a gene
expression profile in which 422 genes exhibited in-
creased expression 8 h after AhR activation. Seventy-
eight of the upregulated genes were also contained in
the set of 1,035 regions immunoprecipitated with the
AhR, suggesting direct interactions between the AhR
and these genes. Several of these genes are known to
be critical to B cell development or function and contain
multiple consensus AhR binding sites (5′-TNGCGTG-3′)
within 3,000 bp upstream and 299 bp downstream of
their respective gene start sites. (AhR binding sites are
known to be located further upstream than is generally
considered to be part of a prototypical gene promoter
[79, 80]). For example, c-myc (seven consensus AhREs)

plays a critical role in normal B cell growth [81] and has
previously been shown to be directly regulated by the
AhR in human mammary tumor cells [57, 82]. Runx2
and Runx3 (eight and seven AhREs, respectively), al-
though most frequently associated with osteoblast [83]
and T cell development [84], respectively, also appear to
be involved in memory B cell formation [85]. XBP1
(four AhREs), repressed by Pax5 (nine AhREs), plays a
critical role in plasma cell differentiation [86]. Finally,
SOCS3 (five AhREs) controls the response of B cells
and plasma cells to STAT-3-dependent cytokines, includ-
ing IL-21 and IL-6, and is critical to the formation of
germinal centers [87]. Therefore, there is the potential for
the AhR, activated by as yet unidentified endogenous
ligands, to influence the transcription of several master
regulators of B cell development.

AhR control of hematopoietic stem cell (HSC)
development

The differentiation of HSCs into all eight blood cell lineages is a
tightly regulated process [88] that changes in subtle but impor-
tant ways during life [89–92]. Disruption of this regulation has a
profound downstream effect on multiple hematopoietic cell
types, including B cells, leading to mixed lineage leukemias
[93], lymphomas [94], stem cell exhaustion [95], and other blood
cell disorders [96, 97]. Therefore, any role that the AhR plays in
HSC differentiation will have a bearing on B cell development.
Several studies indicate that murine and human HSC express
modest AhR levels [98–100] and recent breakthrough studies
indicate that the AhR plays a critical role in HSC growth and
differentiation [95, 101–105]. For example, in vivo AhR modu-
lation disrupts HSC growth, senescence, and migration [95,
101–103, 106, 107]. Of note is that most of these studies used
environmental AhR ligands as probes to establish the nominal
function of the AhR in HSCs [101, 102, 104, 106, 107]. Fur-
thermore, AhR−/− mice exhibit an increased number of bone
marrow HSCs [95] and pro/pre-B cells [8]. Perhaps most dra-
matically, AhR inhibition promotes the expansion of purified,
human HSC, suggesting the use of AhR inhibitors as a clinical
method for expanding HSC populations prior to stem cell trans-
plant [105].

The AhR in B cell malignancies

The studies summarized previously demonstrate that the AhR
plays an integral role in B cell development, likely through
controlling cell growth and apoptosis. In other types of cells,
the AhR regulates cell migration potentially through Slug, Vav3,
TGF-β, and/or c-Jun [108–113]. Since dysregulated cell growth,
apoptosis, and migration are hallmarks of cancer, it could

AhR ExpressionFig. 3 AhR mRNA expression
varies among five human B
lineage cancers. Relative levels
of AhR expression in five human
B lineage cancers were assessed
by analysis of microarray data
obtained from 1,036 human
cancer cell lines (http://www.
broadinstitute.org/ccle/home).
Each box plot reports the
distribution of the AhR transcript
within the samples belonging to
the corresponding B lineage
cancer type
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reasonably be hypothesized that aberrant AhR expression or
activity could contribute to B cell malignancies. One prediction
from this hypothesis would be an association between exposure
to environmental AhR ligands and the risk of B lymphomas,
leukemias, or multiple myeloma. Consistent with this prediction,
exposure to TCDD, halogenated hydrocarbon-containing organ-
ochlorine pesticides, or PCBs significantly increases the risk of
non-Hodgkin’s lymphoma (NHL) [114–116]. In perhaps the best
documented study of TCDD exposure which occurred following
an explosion at an herbicide manufacturing facility in Seveso,
Italy, a significant increase in the risk of NHL was documented
in inhabitants of the surrounding communities (relative odds
ratio=4.45) [117]. In addition, humanAhR polymorphisms have
been linked to the risk of NHL following exposure to organo-
chlorines, some of which are AhR ligands [118]. Similarly, the

risk of multiple myeloma in the TCDD-exposed Seveso popu-
lationwas significantly elevated, with a relative risk of 3.07 [117,
119]. Although controversial, a link between multiple myeloma
risk in Vietnam War veterans exposed to the TCDD-
contaminated defoliant, Agent Orange, has been suggested by
a National Academy of Sciences review committee (http://
books.nap.edu/openbook.php?record_id=13166). In interpreting
these studies, it is important to note that TCDD, which exhibits a
biological half-life of 7–11 years in humans, is a known human
carcinogen but is not genotoxic, i.e., it does not directly induce
mutations. Thus, its carcinogenicity likely reflects, at least in
part, persistent AhR signaling.

In a fashion analogous to the analysis of immune modula-
tion by environmental AhR ligands to elucidate AhR function
during normal B cell development, analysis of cancer

A

B C
Gene ID

Pearson 
Score p value FDR

AhR 1 0.002 0.0366
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Fig. 4 Relative expression of AhR mRNA and AhR target genes in
human tumor cell lines. Analysis of microarray data obtained from
1,036 human cancer cell lines (http://www.broadinstitute.org/ccle/
home) is presented. a Data corresponding to the five lymphoid malig-
nancies listed and five transcripts, including AhR and four of its
putative targets, are displayed as a color-coded gene-by-sample heat
map, with rows (genes) and columns (samples) sorted by hierarchical
clustering [136]. bMicroarray data for the same five lymphoid cancers
were analyzed, and genes ranked by Pearson correlation between the

level of AhR expression and that of four known AhR target genes,
CYP1B1, NQO1, TIPARP, and AhRR. Permutation-based p values and
the corresponding FDR-corrected q values are shown. c A Kolmogo-
rov–Smirnov test was performed to assess the strength of the associa-
tion between AhR and its four targets. The x-axis lists the genes in the
human transcriptome sorted by their distance from AhR (from the
closest, left, to the furthest, right). The position of the four AhR targets
(red ticks) is significantly skewed toward the left-hand side of the list
(permutation-based p value=0.021) [137]
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induction with environmental AhR ligands pointed to a gen-
eral role for the AhR in malignant B cell transformation. That
the AhR plays a role in B cell malignancy regardless of cancer
etiology was supported by many studies demonstrating ele-
vated AhR levels and “constitutive” activity in a variety of
cancer cell lines including lymphomas, myelomas, and T cell
leukemias [50, 82, 120–126].

Microarray analysis of 1,036 human cancer cell lines gen-
erated at the Broad Institute, i.e., the Cancer Cell Line Ency-
clopedia (http://www.broadinstitute.org/ccle/home) (Fig. 3), re-
vealed a hierarchy of AhR expression in which low levels of
AhR were expressed in diffuse large B cell lymphomas,
unspecified B cell lymphomas, and myelomas and notably
higher levels in Hodgkin’s lymphomas and chronic lympho-
cytic leukemias (Fig. 4). Interestingly, expression of three
(CYP1B1, TIPARP, and AhRR) of four (CYP1B1, TIPARP,
AhRR, and NQO1) well-established AhR target genes chosen
at random appear to track with AhR expression in the B lineage
cancer subtypes, suggesting, but not proving, constitutive AhR
activity in these tumor lines as previously documented in other
tumor types [50, 82, 120–126].

Although the molecular mechanisms through which consti-
tutively active AhR may contribute to B lineage cancers is
unknown, several possibilities exist. With regard to Burkitt’s
lymphoma, the AhR complex directly interacts with EBNA-3,
a protein required for EBV-mediated cell transformation and
involved in cell growth and survival. This interaction enhances
AhR nuclear translocation and reporter gene transactivation
[127]. Using histiocytic lymphoma, Burkitt’s lymphoma, and
NHL cell lines, Vogel et al. demonstrated that AhR
hyperactivation with TCDD resulted in a loss of the apoptosis
response, likely through the modulation of cyclooxygenase-2
(Cox-2) and Bcl-xL [128]. Both Cox-2 and Bcl-xL are known
to also inhibit apoptosis in B chronic lymphocytic leukemias
[129]. Furthermore, it was noted that TCDD promoted the
development of lymphomas and Cox-2 expression in
lymphoma-bearing lymph nodes [128]. With regard to
TGF-β, a cytokine that inhibits lymphoma apoptosis,
AhR has been shown to both suppress [130, 131] and

enhance [121] TGF-β expression in a tissue-specific
and/or ligand-specific fashion.

Finally, the role of the AhR in the development of B lineage
malignancies may not be restricted to the transforming cell
itself but may be a function of AhR-dependent events in either
the malignant cell or the tumor microenvironment, specifical-
ly in AhR+ bone marrow stromal cells [4, 5, 40, 132]. For
example, a constitutively active AhR increases IL-6 produc-
tion in head and neck cancers [109] and modulates IL-6
production in bone marrow stromal cells [133]. IL-6, pro-
duced by the bone marrow microenvironment, is a critical
cytokine in the development and maintenance of multiple
myeloma [134].

Conclusions

The use of environmental AhR ligands has enabled immuno-
toxicologists to probe the immune system in order to identify in
which cells and at what stage of their development the AhR is
expressed and functional. These studies demonstrated that the
AhR is variably expressed during B cell differentiation from the
HSC to the antibody-secreting cell stage (Fig. 5). These results
imply that the AhR is a critical mediator of B cell development
and function and that environmental AhR ligands have the
potential to adversely affect B lineage cells at multiple levels.
The expression of a functional AhR in bonemarrow stromal cells
further indicates that the AhR may affect B cell development
indirectly by altering the function of bone marrow stromal cells
critical to B cell growth and differentiation (Fig. 5). Notably, the
expression of the AhR in both HSCs and bone marrow stromal
cells suggests that the AhR may have a more global effect on
other hematopoietic cell lineages, all of which derive from com-
mon HSCs and which require signals provided by bone marrow
stromal elements.

These studies also point to a possible role for the AhR in B
cell malignancies, the incidence of which has risen considerably
since 1975 (http://seer.cancer.gov/statfacts/html/nhl.html) [135].
That is, AhR expression in B cell malignancies or in the bone

HSC ProB         PreB         Transitional B          Resting B         Activated B           Plasma cell
(AhRlow)    (AhR-) (AhR-) (AhR+) (AhRlow) (AhR+)                  (AhR +)

Bone marrow 
Stromal Cells (AhR+)

Lymphoma         Myeloma
(AhRlow)          (AhRlow)

Fig. 5 Role of the AhR in the development of normal and malignant B
cells. AhR is expressed variably during B cell differentiation. While
HSC express low AhR levels, AhR expression is lost by the pro-B cell
stage. Pre-B cells are similarly AhR−. Transitional splenic B cells,
which may have been recently activated by low-affinity autoantigens
[138], upregulate AhR expression. Following clonal selection, resting B

cells express little or no AhR. AhR is again upregulated on activation by
foreign antigens with T cell help and during differentiation into plasma
cells. AhR+ bone marrow stromal cells facilitate normal bone marrow B
cell growth and differentiation and likely play a critical role in
supporting B lineage malignancies including lymphomas and multiple
myelomas
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marrow microenvironment provides a mechanism through
which three large classes of environmental chemicals, dioxins,
planar PCBs, and PAHs, could contribute to B cell cancers. Of
equal importance is the likelihood that the AhR, in the absence
of environmental chemicals but, presumably, in the presence of
endogenous ligands, contributes to B lineage cancers by
influencing cell growth and/or survival either directly within
the malignant cell or indirectly via the tumor microenviron-
ment. If proven, this hypothesis would raise the exciting pos-
sibility that the AhR signaling pathway could be targeted for B
lineage cancer therapy. Thus, studies exploiting environmental
chemicals as biologic probes have not only helped to reveal the
biological functions of what had previously been thought of
only as an environmental chemical sensor but also now suggest
a novel strategy for targeted cancer therapy.
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