28 research outputs found

    Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.

    Get PDF
    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI(+)] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI(+)]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI(+)] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases

    Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The <it>Daphnia pulex </it>genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes <it>D. pulex </it>an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.</p> <p>Results</p> <p>We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of <it>D. pulex</it>. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, <it>RECQ2 </it>(which suppresses homologous recombination) is present in multiple copies while <it>DMC1 </it>is the only gene in our inventory that is absent in the <it>Daphnia </it>genome. Expression patterns for 44 gene copies were similar during meiosis <it>versus </it>parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.</p> <p>Conclusion</p> <p>We propose that expansions in meiotic gene families in <it>D. pulex </it>may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.</p

    State of the Climate in 2016

    Get PDF
    corecore