242 research outputs found

    Single-Unit Activity in the Medial Prefrontal Cortex during Immediate and Delayed Extinction of Fear in Rats

    Get PDF
    Delivering extinction trials minutes after fear conditioning yields only a short-term fear suppression that fully recovers the following day. Because extinction has been reported to increase CS-evoked spike firing and spontaneous bursting in the infralimbic (IL) division of the medial prefrontal cortex (mPFC), we explored the possibility that this immediate extinction deficit is related to altered mPFC function. Single-units were simultaneously recorded in rats from neurons in IL and the prelimbic (PrL) division of the mPFC during an extinction session conducted 10 minutes (immediate) or 24 hours (delayed) after auditory fear conditioning. In contrast to previous reports, IL neurons exhibited CS-evoked responses early in extinction training in both immediate and delayed conditions and these responses decreased in magnitude over the course of extinction training. During the retention test, CS-evoked firing in IL was significantly greater in animals that failed to acquire extinction. Spontaneous bursting during the extinction and test sessions was also different in the immediate and delayed groups. There were no group differences in PrL activity during extinction or retention testing. Alterations in both spontaneous and CS-evoked neuronal activity in the IL may contribute to the immediate extinction deficit

    Similar Neural Activity during Fear and Disgust in the Rat Basolateral Amygdala

    Get PDF
    Much research has focused on how the amygdala processes individual affects, yet little is known about how multiple types of positive and negative affects are encoded relative to one another at the single-cell level. In particular, it is unclear whether different negative affects, such as fear and disgust, are encoded more similarly than negative and positive affects, such as fear and pleasure. Here we test the hypothesis that the basolateral nucleus of the amygdala (BLA), a region known to be important for learned fear and other affects, encodes affective valence by comparing neuronal activity in the BLA during a conditioned fear stimulus (fear CS) with activity during intraoral delivery of an aversive fluid that induces a disgust response and a rewarding fluid that induces a hedonic response. Consistent with the hypothesis, neuronal activity during the fear CS and aversive fluid infusion, but not during the fear CS and rewarding fluid infusion, was more similar than expected by chance. We also found that the greater similarity in activity during the fear- and disgust-eliciting stimuli was specific to a subpopulation of cells and a limited window of time. Our results suggest that a subpopulation of BLA neurons encodes affective valence during learned fear, and furthermore, within this subpopulation, different negative affects are encoded more similarly than negative and positive affects in a time-specific manner

    Speech Cues Contribute to Audiovisual Spatial Integration

    Get PDF
    Speech is the most important form of human communication but ambient sounds and competing talkers often degrade its acoustics. Fortunately the brain can use visual information, especially its highly precise spatial information, to improve speech comprehension in noisy environments. Previous studies have demonstrated that audiovisual integration depends strongly on spatiotemporal factors. However, some integrative phenomena such as McGurk interference persist even with gross spatial disparities, suggesting that spatial alignment is not necessary for robust integration of audiovisual place-of-articulation cues. It is therefore unclear how speech-cues interact with audiovisual spatial integration mechanisms. Here, we combine two well established psychophysical phenomena, the McGurk effect and the ventriloquist's illusion, to explore this dependency. Our results demonstrate that conflicting spatial cues may not interfere with audiovisual integration of speech, but conflicting speech-cues can impede integration in space. This suggests a direct but asymmetrical influence between ventral ‘what’ and dorsal ‘where’ pathways

    Genome-Wide Association Analysis of Soluble ICAM-1 Concentration Reveals Novel Associations at the NFKBIK, PNPLA3, RELA, and SH2B3 Loci

    Get PDF
    Soluble ICAM-1 (sICAM-1) is an endothelium-derived inflammatory marker that has been associated with diverse conditions such as myocardial infarction, diabetes, stroke, and malaria. Despite evidence for a heritable component to sICAM-1 levels, few genetic loci have been identified so far. To comprehensively address this issue, we performed a genome-wide association analysis of sICAM-1 concentration in 22,435 apparently healthy women from the Women's Genome Health Study. While our results confirm the previously reported associations at the ABO and ICAM1 loci, four novel associations were identified in the vicinity of NFKBIK (rs3136642, P = 5.4×10−9), PNPLA3 (rs738409, P = 5.8×10−9), RELA (rs1049728, P = 2.7×10−16), and SH2B3 (rs3184504, P = 2.9×10−17). Two loci, NFKBIB and RELA, are involved in NFKB signaling pathway; PNPLA3 is known for its association with fatty liver disease; and SH3B2 has been associated with a multitude of traits and disease including myocardial infarction. These associations provide insights into the genetic regulation of sICAM-1 levels and implicate these loci in the regulation of endothelial function

    A protocol for a trial of homeopathic treatment for irritable bowel syndrome

    Get PDF
    Background Irritable bowel syndrome is a chronic condition with no known cure. Many sufferers seek complementary and alternative medicine including homeopathic treatment. However there is much controversy as to the effectiveness of homeopathic treatment. This three-armed study seeks to explore the effectiveness of individualised homeopathic treatment plus usual care compared to both an attention control plus usual care and usual care alone, for patients with irritable bowel syndrome. Methods/design This is a three-armed pragmatic randomised controlled trial using the cohort multiple randomised trial methodology. Patients are recruited to an irritable bowel syndrome cohort from primary and secondary care using GP databases and consultants lists respectively. From this cohort patients are randomly selected to be offered, 5 sessions of homeopathic treatment plus usual care, 5 sessions of supportive listening plus usual care or usual care alone. The primary clinical outcome is the Irritable Bowel Syndrome Symptom Severity at 26 weeks. From a power calculation, it is estimated that 33 people will be needed for the homeopathic treatment arm and 132 for the usual care arm, to detect a minimal clinical difference at 80 percent power and 5 percent significance allowing for loss to follow up. An unequal group size has been used for reasons of cost. Analysis will be by intention to treat and will compare homeopathic treatment with usual care at 26 weeks as the primary analysis, and homeopathic treatment with supportive listening as an additional analysis. Discussion This trial has received NHS approval and results are expected in 2013. Trial registration Current Controlled Trials ISRCTN9065114

    Amygdala circuitry mediating reversible and bidirectional control of anxiety

    Get PDF
    Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease

    Chronic OVA allergen challenged Siglec-F deficient mice have increased mucus, remodeling, and epithelial Siglec-F ligands which are up-regulated by IL-4 and IL-13

    Get PDF
    Abstract Background In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge. Methods Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically with OVA for one month. Levels of airway inflammation (eosinophils), Siglec-F ligand expresion and remodeling (mucus, fibrosis, smooth muscle thickness, extracellular matrix protein deposition) were assessed in lung sections by image analysis and immunohistology. Airway hyperreactivity to methacholine was assessed in intubated and ventilated mice. Results Siglec-F deficient mice challenged with OVA for one month had significantly increased numbers of BAL and peribronchial eosinophils compared to WT mice which was associated with a significant increase in mucus expression as assessed by the number of periodic acid Schiff positive airway epithelial cells. In addition, OVA challenged Siglec-F deficient mice had significantly increased levels of peribronchial fibrosis (total lung collagen, area of peribronchial trichrome staining), as well as increased numbers of peribronchial TGF-β1+ cells, and increased levels of expression of the extracellular matrix protein fibronectin compared to OVA challenged WT mice. Lung sections immunostained with a Siglec-Fc to detect Siglec-F ligand expression demonstrated higher levels of expression of the Siglec-F ligand in the peribronchial region in OVA challenged Siglec-F deficient mice compared to WT mice. WT and Siglec-F deficient mice challenged intranasally with IL-4 or IL-13 had significantly increased levels of airway epithelial Siglec-F ligand expression, whereas this was not observed in WT or Siglec-F deficient mice challenged with TNF-α. There was a significant increase in the thickness of the peribronchial smooth muscle layer in OVA challenged Siglec-F deficient mice, but this was not associated with significant increased airway hyperreactivity compared to WT mice. Conclusions Overall, this study demonstrates an important role for Siglec-F in modulating levels of chronic eosinophilic airway inflammation, peribronchial fibrosis, thickness of the smooth muscle layer, mucus expression, fibronectin, and levels of peribronchial Siglec-F ligands suggesting that Siglec-F may normally function to limit levels of chronic eosinophilic inflammation and remodeling. In addition, IL-4 and IL-13 are important regulators of Siglec-F ligand expression by airway epithelium

    Using Combined Morphological, Allometric and Molecular Approaches to Identify Species of the Genus Raillietiella (Pentastomida)

    Get PDF
    Taxonomic studies of parasites can be severely compromised if the host species affects parasite morphology; an uncritical analysis might recognize multiple taxa simply because of phenotypically plastic responses of parasite morphology to host physiology. Pentastomids of the genus Raillietiella are endoparasitic crustaceans primarily infecting the respiratory system of carnivorous reptiles, but also recorded from bufonid anurans. The delineation of pentastomids at the generic level is clear, but the taxonomic status of many species is not. We collected raillietiellids from lungs of the invasive cane toad (Rhinella marina), the invasive Asian house gecko (Hemidactylus frenatus), and a native tree frog (Litoria caerulea) in tropical Australia, and employed a combination of genetic analyses, and traditional and novel morphological methods to clarify their identity. Conventional analyses of parasite morphology (which focus on raw values of morphological traits) revealed two discrete clusters in terms of pentastome hook size, implying two different species of pentastomes: one from toads and a tree frog (Raillietiella indica) and another from lizards (Raillietiella frenatus). However, these clusters disappeared in allometric analyses that took pentastome body size into account, suggesting that only a single pentastome taxon may be involved. Our molecular data revealed no genetic differences between parasites in toads versus lizards, confirming that there was only one species: R. frenatus. This pentastome (previously known only from lizards) clearly is also capable of maturing in anurans. Our analyses show that the morphological features used in pentastomid taxonomy change as the parasite transitions through developmental stages in the definitive host. To facilitate valid descriptions of new species of pentastomes, future taxonomic work should include both morphological measurements (incorporating quantitative measures of body size and hook bluntness) and molecular data

    Retrieval of Context-Associated Memory is Dependent on the Cav3.2 T-Type Calcium Channel

    Get PDF
    Among all voltage-gated calcium channels, the T-type Ca2+ channels encoded by the Cav3.2 genes are highly expressed in the hippocampus, which is associated with contextual, temporal and spatial learning and memory. However, the specific involvement of the Cav3.2 T-type Ca2+ channel in these hippocampus-dependent types of learning and memory remains unclear. To investigate the functional role of this channel in learning and memory, we subjected Cav3.2 homozygous and heterozygous knockout mice and their wild-type littermates to hippocampus-dependent behavioral tasks, including trace fear conditioning, the Morris water-maze and passive avoidance. The Cav3.2 −/− mice performed normally in the Morris water-maze and auditory trace fear conditioning tasks but were impaired in the context-cued trace fear conditioning, step-down and step-through passive avoidance tasks. Furthermore, long-term potentiation (LTP) could be induced for 180 minutes in hippocampal slices of WTs and Cav3.2 +/− mice, whereas LTP persisted for only 120 minutes in Cav3.2 −/− mice. To determine whether the hippocampal formation is responsible for the impaired behavioral phenotypes, we next performed experiments to knock down local function of the Cav3.2 T-type Ca2+ channel in the hippocampus. Wild-type mice infused with mibefradil, a T-type channel blocker, exhibited similar behaviors as homozygous knockouts. Taken together, our results demonstrate that retrieval of context-associated memory is dependent on the Cav3.2 T-type Ca2+ channel

    Synaptic Transmission and Plasticity in an Active Cortical Network

    Get PDF
    BACKGROUND: The cerebral cortex is permanently active during both awake and sleep states. This ongoing cortical activity has an impact on synaptic transmission and short-term plasticity. An activity pattern generated by the cortical network is a slow rhythmic activity that alternates up (active) and down (silent) states, a pattern occurring during slow wave sleep, anesthesia and even in vitro. Here we have studied 1) how network activity affects short term synaptic plasticity and, 2) how synaptic transmission varies in up versus down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings obtained from cortex in vitro and in vivo were used to record synaptic potentials, while presynaptic activation was achieved either with electrical or natural stimulation. Repetitive activation of layer 4 to layer 2/3 synaptic connections from ferret visual cortex slices displayed synaptic augmentation that was larger and longer lasting in active than in silent slices. Paired-pulse facilitation was also significantly larger in an active network and it persisted for longer intervals (up to 200 ms) than in silent slices. Intracortical synaptic potentials occurring during up states in vitro increased their amplitude while paired-pulse facilitation disappeared. Both intracortical and thalamocortical synaptic potentials were also significantly larger in up than in down states in the cat visual cortex in vivo. These enhanced synaptic potentials did not further facilitate when pairs of stimuli were given, thus paired-pulse facilitation during up states in vivo was virtually absent. Visually induced synaptic responses displayed larger amplitudes when occurring during up versus down states. This was further tested in rat barrel cortex, where a sensory activated synaptic potential was also larger in up states. CONCLUSIONS/SIGNIFICANCE: These results imply that synaptic transmission in an active cortical network is more secure and efficient due to larger amplitude of synaptic potentials and lesser short term plasticity
    corecore