23 research outputs found

    The GPI Anchor Signal Sequence Dictates the Folding and Functionality of the Als5 Adhesin from Candida albicans

    Get PDF
    Background: Proteins destined to be Glycosylphosphatidylinositol (GPI) anchored are translocated into the ER lumen completely before the C-terminal GPI anchor attachment signal sequence (SS) is removed by the GPI-transamidase and replaced by a pre-formed GPI anchor precursor. Does the SS have a role in dictating the conformation and function of the protein as well? Methodology/Principal Findings: We generated two variants of the Als5 protein without and with the SS in order to address the above question. Using a combination of biochemical and biophysical techniques, we show that in the case of Als5, an adhesin of C. albicans, the C-terminal deletion of 20 amino acids (SS) results in a significant alteration in conformation and function of the mature protein. Conclusions/Significance: We propose that the locking of the conformation of the precursor protein in an alternate conformation from that of the mature protein is one probable strategy employed by the cell to control the behaviour an

    Architectural analysis of root system of sexually vs. vegetatively propagated yam (Dioscorea rotundata Poir.), a tuber monocot

    No full text
    A-09-11International audienceArchitectural descriptors were used to understand root system structure and development in white yam (Dioscorea rotundata Poir., Dioscoreaceae), a tuber monocot. Observations were made on seedlings and plant derived from tuber fragments, cultivated in greenhouses over a developmental cycle. This study demonstrated that both seedlings and plants derived from tubers have two distinct root systems that are highly organized. The first (seminal or tubercular) has been called the temporary root system which is small and short lived. The architectural unit here is made up of two root axis categories. The second (adventitious in both cases) has been called the definitive root system. It is larger and has a far longer lifespan than temporary root systems. The architectural unit here is made up of three root axis categories. Adventitious root systems are formed by structural repetitions of their own architectural unit. The temporary and definitive root systems possess the same structural and functional properties and become established and succeed one another in time following an identical developmental sequence. Neo tuber development is coupled with the root system development. Our results highlight to what extent it is important to study simultaneously the different parts of a root system in order to understand its development. This study confirms how architectural tools can be used to understand root system structure and development and prove accurate informations on root system development for use in agricultural management
    corecore