535 research outputs found

    The ongoing need for rates: can physiology and omics come together to co-design the measurements needed to understand complex ocean biogeochemistry?

    Get PDF
    The necessity to understand the influence of global ocean change on biota has exposed wide-ranging gaps in our knowledge of the fundamental principles that underpin marine life. Concurrently, physiological research has stagnated, in part driven by the advent and rapid evolution of molecular biological techniques, such that they now influence all lines of enquiry in biological oceanography. This dominance has led to an implicit assumption that physiology is outmoded, and advocacy that ecological and biogeochemical models can be directly informed by omics. However, the main modeling currencies are biological rates and biogeochemical fluxes. Here, we ask: how do we translate the wealth of information on physiological potential from omics-based studies to quantifiable physiological rates and, ultimately, to biogeochemical fluxes? Based on the trajectory of the state-of-the-art in biomedical sciences, along with case-studies from ocean sciences, we conclude that it is unlikely that omics can provide such rates in the coming decade. Thus, while physiological rates will continue to be central to providing projections of global change biology, we must revisit the metrics we rely upon. We advocate for the co-design of a new generation of rate measurements that better link the benefits of omics and physiology

    The use of a Psoroptes ovis serodiagnostic test for the analysis of a natural outbreak of sheep scab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sheep scab is a highly contagious disease of sheep caused by the ectoparasitic mite <it>Psoroptes ovis</it>. The disease is endemic in the UK and has significant economic impact through its effects on performance and welfare. Diagnosis of sheep scab is achieved through observation of clinical signs e.g. itching, pruritis and wool loss and ultimately through the detection of mites in skin scrapings. Early stages of infestation are often difficult to diagnose and sub-clinical animals can be a major factor in disease spread. The development of a diagnostic assay would enable farmers and veterinarians to detect disease at an early stage, reducing the risk of developing clinical disease and limiting spread.</p> <p>Methods</p> <p>Serum samples were obtained from an outbreak of sheep scab within an experimental flock (n = 480 (3 samples each from 160 sheep)) allowing the assessment, by ELISA of sheep scab specific antibody prior to infestation, mid-outbreak (combined with clinical assessment) and post-treatment.</p> <p>Results</p> <p>Analysis of pre-infestation samples demonstrated low levels of potential false positives (3.8%). Of the 27 animals with clinical or behavioural signs of disease 25 tested positive at the mid-outbreak sampling period, however, the remaining 2 sheep tested positive at the subsequent sampling period. Clinical assessment revealed the absence of clinical or behavioural signs of disease in 132 sheep, whilst analysis of mid-outbreak samples showed that 105 of these clinically negative animals were serologically positive, representing potential sub-clinical infestations.</p> <p>Conclusions</p> <p>This study demonstrates that this ELISA test can effectively diagnose sheep scab in a natural outbreak of disease, and more importantly, highlights its ability to detect sub-clinically infested animals. This ELISA, employing a single recombinant antigen, represents a major step forward in the diagnosis of sheep scab and may prove to be critical in any future control program.</p

    Children's Medicines in Tanzania: A National Survey of Administration Practices and Preferences.

    Get PDF
    The dearth of age-appropriate formulations of many medicines for children poses a major challenge to pediatric therapeutic practice, adherence, and health care delivery worldwide. We provide information on current administration practices of pediatric medicines and describe key stakeholder preferences for new formulation characteristics. We surveyed children aged 6-12 years, parents/caregivers over age 18 with children under age 12, and healthcare workers in 10 regions of Tanzania to determine current pediatric medicine prescription and administration practices as well as preferences for new formulations. Analyses were stratified by setting, pediatric age group, parent/caregiver education, and healthcare worker cadre. Complete data were available for 206 children, 202 parents/caregivers, and 202 healthcare workers. Swallowing oral solid dosage forms whole or crushing/dissolving them and mixing with water were the two most frequently reported methods of administration. Children frequently reported disliking medication taste, and many had vomited doses. Healthcare workers reported medicine availability most significantly influences prescribing practices. Most parents/caregivers and children prefer sweet-tasting medicine. Parents/caregivers and healthcare workers prefer oral liquid dosage forms for young children, and had similar thresholds for the maximum number of oral solid dosage forms children at different ages can take. There are many impediments to acceptable and accurate administration of medicines to children. Current practices are associated with poor tolerability and the potential for under- or over-dosing. Children, parents/caregivers, and healthcare workers in Tanzania have clear preferences for tastes and formulations, which should inform the development, manufacturing, and marketing of pediatric medications for resource-limited settings

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Synthesis, antitubercular activity and mechanism of resistance of highly effective thiacetazone analogues

    Get PDF
    Defining the pharmacological target(s) of currently used drugs and developing new analogues with greater potency are both important aspects of the search for agents that are effective against drug-sensitive and drug-resistant Mycobacterium tuberculosis. Thiacetazone (TAC) is an anti-tubercular drug that was formerly used in conjunction with isoniazid, but removed from the antitubercular chemotherapeutic arsenal due to toxic side effects. However, several recent studies have linked the mechanisms of action of TAC to mycolic acid metabolism and TAC-derived analogues have shown increased potency against M. tuberculosis. To obtain new insights into the molecular mechanisms of TAC resistance, we isolated and analyzed 10 mutants of M. tuberculosis that were highly resistant to TAC. One strain was found to be mutated in the methyltransferase MmaA4 at Gly101, consistent with its lack of oxygenated mycolic acids. All remaining strains harbored missense mutations in either HadA (at Cys61) or HadC (at Val85, Lys157 or Thr123), which are components of the bhydroxyacyl-ACP dehydratase complex that participates in the mycolic acid elongation step. Separately, a library of 31 new TAC analogues was synthesized and evaluated against M. tuberculosis. Two of these compounds, 15 and 16, exhibited minimal inhibitory concentrations 10-fold lower than the parental molecule, and inhibited mycolic acid biosynthesis in a dose-dependent manner. Moreover, overexpression of HadAB HadBC or HadABC in M. tuberculosis led to high level resistance to these compounds, demonstrating that their mode of action is similar to that of TAC. In summary, this study uncovered new mutations associated with TAC resistance and also demonstrated that simple structural optimization of the TAC scaffold was possible and may lead to a new generation of TAC-derived drug candidates for the potential treatment of tuberculosis as mycolic acid inhibitors

    Analysis of dental care of children receiving comprehensive care under general anaesthesia at a teaching hospital in England

    Get PDF
    Objectives: This study aimed to analyse the characteristics of comprehensive dental care provided under general anaesthesia (CDGA) and to review the additional treatment required by children over the 6 years subsequent to CDGA. Method: Information collected from hospital records for the 6-year period following the first CDGA included the types of dental treatment performed at CDGA, the return rates for follow-up appointments, further treatment required subsequent to CDGA and the types of dental treatment performed at repeat DGA. Results: The study population consisted of 263 children, of whom 129 had a significant medical history, with mean age of 6.7 years. The results revealed that the waiting time for CDGA was significantly shorter in children who had a significant medical history, with 49 % being admitted for CDGA within 3 months of pre-GA assessment, as compared to 29 % of healthy children. 67 % of children had follow-up care recorded, with a slightly higher proportion of children with significant medical history returning for follow-up [70 % (90/129)] compared with 65 % (87/134) of healthy children. Re-treatment rates were 34 % (88/263), the majority of cases being treated under local analgesia (42/88). 34 of 263 children had repeat DGA (12.9 %). Of these 71 % (24/34) were children with significant medical history. The mean age at repeat DGA was 9 years. In 25 of 34 children (74 %), repeat DGA was due to trauma, oral pathology, supernumerary removal, hypomineralized teeth or new caries of previously sound or un-erupted teeth at CDGA. The ratio of extraction over restoration (excluding fissure sealants) performed at repeat DGA was 2.8, compared with the ratio of 1.3 in the initial CDGA. Conclusions: There was a higher ratio of extraction over restorations at the repeat DGA. This suggests that the prescribed treatments at repeat DGA were more aggressive as compared to the initial CDGA in 1997. The majority of the treatment required at repeat DGA was to treat new disease
    corecore