60 research outputs found

    Phylogenetic and environmental context of a Tournaisian tetrapod fauna

    Get PDF
    The end-Devonian to mid-Mississippian time interval has long been known for its depauperate palaeontological record, especially for tetrapods. This interval encapsulates the time of increasing terrestriality among tetrapods, but only two Tournaisian localities previously produced tetrapod fossils. Here we describe five new Tournaisian tetrapods (Perittodus apsconditus\textit{Perittodus apsconditus}, Koilops herma\textit{Koilops herma}, Ossirarus kierani\textit{Ossirarus kierani}, Diploradus austiumensis\textit{Diploradus austiumensis} and Aytonerpeton microps\textit{Aytonerpeton microps}) from two localities in their environmental context. A phylogenetic analysis retrieved three taxa as stem tetrapods, interspersed among Devonian and Carboniferous forms, and two as stem amphibians, suggesting a deep split among crown tetrapods. We also illustrate new tetrapod specimens from these and additional localities in the Scottish Borders region. The new taxa and specimens suggest that tetrapod diversification was well established by the Tournaisian. Sedimentary evidence indicates that the tetrapod fossils are usually associated with sandy siltstones overlying wetland palaeosols. Tetrapods were probably living on vegetated surfaces that were subsequently flooded. We show that atmospheric oxygen levels were stable across the Devonian/Carboniferous boundary, and did not inhibit the evolution of terrestriality. This wealth of tetrapods from Tournaisian localities highlights the potential for discoveries elsewhere.NERC consortium grants NE/J022713/1 (Cambridge), NE/J020729/1 (Leicester), NE/J021067/1 (BGS), NE/J020621/1 (NMS) and NE/J021091/1 (Southampton

    Expression of Mcm2, geminin and Ki67 in normal oral mucosa, oral epithelial dysplasias and their corresponding squamous-cell carcinomas

    Get PDF
    Proteins necessary for the normal regulation of the cell cycle include minichromosome maintenance protein 2 (Mcm2) and geminin. These are overexpressed in several premalignant and malignant tumours. The Mcm2/Ki67 ratio can be used to estimate the population of cells that are in early G1 (licensed to proliferate), and the geminin/Ki67 ratio can determine the relative length of G1. A high ratio indicates a short G1 and a high rate of cell proliferation. Mcm2 and geminin have been scarcely explored in oral epithelial dysplasia (OED) and oral squamous-cell carcinoma (OSCC). The purpose of this study was to identify the expression pattern of Mcm2, Ki67 and geminin in normal oral mucosa (NOM), OED and their subsequent OSCC, to determine if expression could help predict the prognosis of OED. Paraffin sections of 41 OED cases that progressed to carcinoma, 40 OED without malignant progression, 38 OSCC and 15 NOM were immunostained with antibodies against Mcm2, geminin and Ki67. Labelling indices (LIs) increased progressively from NOM, OED and OSCC (Mcm2, Po0.001; geminin, Po0.001 and Ki67, Po0.001). In all the OED cases (n ¼ 81) the levels of expression of Mcm2 (LI, 73.6), geminin (LI, 24.4) and Ki67 (LI, 44.5) were elevated indicating a constant cellcycle re-entry. When the OED groups were compared, Mcm2 protein expression was higher in the OED with malignant progression (P ¼ 0.04), likewise there was a significant increase in the Mcm2/Ki67 and geminin/Ki67 ratios (P ¼ 0.04 and 0.02 respectively). Mcm2 and geminin proteins seem to be novel biomarkers of growth and may be useful prognostic tools for OED

    Pathogen-induced hatching and population-specific life-history response to water-borne cues in brown trout (Salmo trutta)

    Get PDF
    Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter

    Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes

    Get PDF
    In most species, crossovers (COs) are essential for the accurate segregation of homologous chromosomes at the first meiotic division. Their number and location are tightly regulated. Here, we report a detailed, genome-wide characterization of the rate and localization of COs in Arabidopsis thaliana, in male and female meiosis. We observed dramatic differences between male and female meiosis which included: (i) genetic map length; 575 cM versus 332 cM respectively; (ii) CO distribution patterns: male CO rates were very high at both ends of each chromosome, whereas female CO rates were very low; (iii) correlations between CO rates and various chromosome features: female CO rates correlated strongly and negatively with GC content and gene density but positively with transposable elements (TEs) density, whereas male CO rates correlated positively with the CpG ratio. However, except for CpG, the correlations could be explained by the unequal repartition of these sequences along the Arabidopsis chromosome. For both male and female meiosis, the number of COs per chromosome correlates with chromosome size expressed either in base pairs or as synaptonemal complex length. Finally, we show that interference modulates the CO distribution both in male and female meiosis

    Immunohistochemical estimation of cell cycle phase in laryngeal neoplasia

    Get PDF
    We previously developed an immunohistochemical method for estimating cell cycle state and phase in tissue samples, including biopsies that are too small for flow cytometry. We have used our technique to examine whether primary abnormalities of the cell cycle exist in laryngeal neoplasia. Antibodies against the markers of cell cycle entry, minichromosome maintenance protein-2 (Mcm-2) and Ki67, and putative markers of cell cycle phase, cyclin D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis) were applied to paraffin-embedded sections of normal larynx (n=8), laryngeal dysplasia (n=10) and laryngeal squamous cell carcinoma (n=10). Cells expressing each marker were determined as a percentage of total cells, termed the labelling index (LI), and as a percentage of Mcm-2-positive cells, termed the labelling fraction (LF). The frequency of coexpression of each putative phase marker was investigated by confocal microscopy. There was a correlation between Mcm-2 and Ki67 LIs (ρ=0.93) but Mcm-2 LIs were consistently higher. All cells expressing a phase marker coexpressed Mcm-2, whereas Ki67 was not expressed in a proportion of these cells. The putative phase markers showed little coexpression. Labelling index values increased on progression from normal larynx through laryngeal dysplasia to squamous cell carcinoma for Mcm-2 (P=0.001), Ki67 (P=0.0002), cyclin D1 (P=0.015), cyclin A (P=0.0001) and cyclin B1 (P=0.0004). There was no evidence of an increase in the LF for any phase marker. Immunohistochemistry can be used to estimate cell cycle state and phase in laryngeal biopsies. Our data argues against primary cell cycle phase abnormalities in laryngeal neoplasia
    corecore