348 research outputs found

    Novel clinicopathological characteristics differentiate dementia with Lewy bodies from Parkinson's disease dementia

    Get PDF
    Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) known as Lewy body dementias have overlapping clinical and neuropathological features. Neuropathology in both includes combination of Lewy body and Alzheimer's disease (AD) pathology. Cerebral amyloid angiopathy (CAA), often seen in AD, is increasingly recognised for its association with dementia. AIMS: This study investigated clinical and neuropathological differences between DLB and PDD. METHODS: 52 PDD and 16 DLB cases from the Queen Square Brain Bank (QSBB) for Neurological disorders were included. Comprehensive clinical data of motor and cognitive features were obtained from medical records. Neuropathological assessment included examination of CAA, Lewy body and AD pathology. RESULTS: CAA was more common in DLB than in PDD (p = 0.003). The severity of CAA was greater in DLB than in PDD (p = 0.009), with significantly higher CAA scores in the parietal lobe (p = 0.043), and the occipital lobe (p = 0.008), in DLB than in PDD. The highest CAA scores were observed in cases with APOE ε4/4 and ε2/4. Survival analysis showed worse prognosis in DLB, as DLB reached each clinical milestone sooner than PDD. Absence of dyskinesia in DLB is linked to the significantly lower lifetime cumulative dose of levodopa in comparison with PDD. CONCLUSIONS: This is the first study which identified prominent concurrent CAA pathology as a pathological substrate of DLB. More prominent CAA and rapid disease progression as measured by clinical milestones distinguish DLB from PDD

    Assembly of alpha-synuclein and neurodegeneration in the central nervous system of heterozygous M83 mice following the peripheral administration of alpha-synuclein seeds

    Get PDF
    Peripheral administration (oral, intranasal, intraperitoneal, intravenous) of assembled A53T α-synuclein induced synucleinopathy in heterozygous mice transgenic for human mutant A53T α-synuclein (line M83). The same was the case when cerebellar extracts from a case of multiple system atrophy with type II α-synuclein filaments were administered intraperitoneally, intravenously or intramuscularly. We observed abundant immunoreactivity for pS129 α-synuclein in nerve cells and severe motor impairment, resulting in hindlimb paralysis and shortened lifespan. Filaments immunoreactive for pS129 α-synuclein were in evidence. A 70% loss of motor neurons was present five months after an intraperitoneal injection of assembled A53T α-synuclein or cerebellar extract with type II α-synuclein filaments from an individual with a neuropathologically confirmed diagnosis of multiple system atrophy. Microglial cells changed from a predominantly ramified to a dystrophic appearance. Taken together, these findings establish a close relationship between the formation of α-synuclein inclusions in nerve cells and neurodegeneration, accompanied by a shift in microglial cell morphology. Propagation of α-synuclein inclusions depended on the characteristics of both seeds and transgenically expressed protein

    Locomotor hyperactivity in 14-3-3Zeta KO mice is associated with dopamine transporter dysfunction

    Get PDF
    Dopamine (DA) neurotransmission requires a complex series of enzymatic reactions that are tightly linked to catecholamine exocytosis and receptor interactions on pre- and postsynaptic neurons. Regulation of dopaminergic signalling is primarily achieved through reuptake of extracellular DA by the DA transporter (DAT) on presynaptic neurons. Aberrant regulation of DA signalling, and in particular hyperactivation, has been proposed as a key insult in the presentation of schizophrenia and related neuropsychiatric disorders. We recently identified 14-3-3ζ as an essential component of neurodevelopment and a central risk factor in the schizophrenia protein interaction network. Our analysis of 14-3-3ζ-deficient mice now shows that baseline hyperactivity of knockout (KO) mice is rescued by the antipsychotic drug clozapine. 14-3-3ζ KO mice displayed enhanced locomotor hyperactivity induced by the DA releaser amphetamine. Consistent with 14-3-3ζ having a role in DA signalling, we found increased levels of DA in the striatum of 14-3-3ζ KO mice. Although 14-3-3ζ is proposed to modulate activity of the rate-limiting DA biosynthesis enzyme, tyrosine hydroxylase (TH), we were unable to identify any differences in total TH levels, TH localization or TH activation in 14-3-3ζ KO mice. Rather, our analysis identified significantly reduced levels of DAT in the absence of notable differences in RNA or protein levels of DA receptors D1–D5. Providing insight into the mechanisms by which 14-3-3ζ controls DAT stability, we found a physical association between 14-3-3ζ and DAT by co-immunoprecipitation. Taken together, our results identify a novel role for 14-3-3ζ in DA neurotransmission and provide support to the hyperdopaminergic basis of pathologies associated with schizophrenia and related disorders.H Ramshaw, X Xu, EJ Jaehne, P McCarthy, Z Greenberg, E Saleh, B McClure, J Woodcock, S Kabbara, S Wiszniak, Ting-Yi Wang, C Parish, M van den Buuse, BT Baune, A Lopez and Q Schwar

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time

    Nanoparticle vesicle encoding for imaging and tracking cell populations.

    Get PDF
    For phenotypic behavior to be understood in the context of cell lineage and local environment, properties of individual cells must be measured relative to population-wide traits. However, the inability to accurately identify, track and measure thousands of single cells via high-throughput microscopy has impeded dynamic studies of cell populations. We demonstrate unique labeling of cells, driven by the heterogeneous random uptake of fluorescent nanoparticles of different emission colors. By sequentially exposing a cell population to different particles, we generated a large number of unique digital codes, which corresponded to the cell-specific number of nanoparticle-loaded vesicles and were visible within a given fluorescence channel. When three colors are used, the assay can self-generate over 17,000 individual codes identifiable using a typical fluorescence microscope. The color-codes provided immediate visualization of cell identity and allowed us to track human cells with a success rate of 78% across image frames separated by 8 h

    Frequency-Dependent Properties of a Fluid Jet Stimulus: Calibration, Modeling, and Application to Cochlear Hair Cell Bundles

    Get PDF
    The investigation of small physiological mechano-sensory systems, such as hair cells or their accessory structures in the inner ear or lateral line organ, requires mechanical stimulus equipment that allows spatial manipulation with micrometer precision and stimulation with amplitudes down to the nanometer scale. Here, we describe the calibration of a microfluid jet produced by a device that was designed to excite individual cochlear hair cell bundles or cupulae of the fish superficial lateral line system. The calibration involves a precise definition of the linearity and time- and frequency-dependent characteristics of the fluid jet as produced by a pressurized fluid-filled container combined with a glass pipette having a microscopically sized tip acting as an orifice. A procedure is described that can be applied during experiments to obtain a fluid jet’s frequency response, which may vary with each individual glass pipette. At small orifice diameters (<15 μm), the fluid velocity of the jet is proportional to the displacement of the piezoelectric actuator pressurizing the container’s volume and is suitable to stimulate the hair bundles of sensory hair cells. With increasing diameter, the fluid jet velocity becomes proportional to the actuator’s velocity. The experimentally observed characteristics can be described adequately by a dynamical model of damped fluid masses coupled by elastic components
    corecore