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Abstract 

Peripheral administration (oral, intranasal, intraperitoneal, intravenous) of assembled A53T α‑synuclein induced synu‑
cleinopathy in heterozygous mice transgenic for human mutant A53T α‑synuclein (line M83). The same was the case 
when cerebellar extracts from a case of multiple system atrophy with type II α‑synuclein filaments were administered 
intraperitoneally, intravenously or intramuscularly. We observed abundant immunoreactivity for pS129 α‑synuclein 
in nerve cells and severe motor impairment, resulting in hindlimb paralysis and shortened lifespan. Filaments immu‑
noreactive for pS129 α‑synuclein were in evidence. A 70% loss of motor neurons was present five months after an 
intraperitoneal injection of assembled A53T α‑synuclein or cerebellar extract with type II α‑synuclein filaments from 
an individual with a neuropathologically confirmed diagnosis of multiple system atrophy. Microglial cells changed 
from a predominantly ramified to a dystrophic appearance. Taken together, these findings establish a close relation‑
ship between the formation of α‑synuclein inclusions in nerve cells and neurodegeneration, accompanied by a shift 
in microglial cell morphology. Propagation of α‑synuclein inclusions depended on the characteristics of both seeds 
and transgenically expressed protein.
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Introduction
The ordered assembly of a small number of proteins into 
pathological amyloid filaments defines most human neu-
rodegenerative diseases, including Alzheimer’s (AD) and 

Parkinson’s (PD) [1]. α-Synuclein assemblies are charac-
teristic of PD, PD dementia, dementia with Lewy bodies 
(DLB), multiple system atrophy (MSA) and several rarer 
conditions, collectively referred to as synucleinopathies 
[2]. In these diseases, the 140 amino acid α-synuclein 
assembles into a filamentous, β-sheet-rich conformation. 
Unbranched α-synuclein filaments are 5–10 nm in diam-
eter and up to several micrometres long, mostly in nerve 
cells (Lewy bodies and neurites) and, for MSA, glial cells, 
chiefly oligodendrocytes (Papp-Lantos bodies).
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A link between α-synuclein assembly and disease 
was established by the findings that missense muta-
tions in SNCA (the α-synuclein gene), and multiplica-
tions thereof, cause rare forms of PD and PD dementia 
[3, 4]. Some mutations and multiplications also give rise 
to DLB. Abundant α-synuclein inclusions are present in 
all cases of inherited disease. Sequence variations in the 
regulatory region of SNCA are associated with increased 
α-synuclein expression and a heightened risk of sporadic 
PD [5].

Accumulating evidence indicates that assembled 
α-synuclein propagates in the nervous system in a 
manner akin to prions. Post mortem staging shows 
progression of α-synuclein pathology in a defined spati-
otemporal pattern, resulting in PD and DLB [6]. Assem-
bled α-synuclein first appears in the dorsal motor nucleus 
of the vagus nerve in the brainstem, before ascending to 
anatomically related regions in midbrain and cerebral 
cortex. Additional evidence comes from the apparent 
spreading of Lewy pathology from host to graft, follow-
ing transplantation of foetal human mesencephalic tis-
sues as a treatment for PD [7, 8]. These findings are 
extended by transmission studies, where assembled 
α-synuclein, in the form of aggregated recombinant pro-
tein or brain-derived material, is injected intracerebrally 
[9–12] or peripherally [13–24]. One study described the 
effects of oral administration of assembled recombinant 
α-synuclein [25].

The dual-hit hypothesis of PD posits that the filamen-
tous assembly of α-synuclein begins in the nose and the 
digestive tract, following entry of a pathogen through the 
nasal cavity, which can reach the gut following swallow-
ing [26]. In support, PD patients often report deficits in 
gastrointestinal motility and olfaction early in the disease 
process [27]. Full truncal vagotomy has been reported 
to lower the risk of developing PD by 40–50% after 
10–20 years of follow-up [28, 29].

Here we investigated the effects of oral, nasal, intrave-
nous, intraperitoneal and intramuscular administration 
of α-synuclein seeds on assembly, neurodegeneration 
and neuroinflammation. Following the oral and nasal 
administrations, implicated in the dual-hit hypothesis, 
we characterised for the first time the initial sites affected 
by α-synuclein pathology and their similarity to those 
first implicated in prion transmission [30, 31]. We used 
3-month-old heterozygous mice transgenic for human 
A53T α-synuclein (line M83) [32], that do not develop 
synucleinopathy until at least 20 months of age. Irrespec-
tive of the mode of administration, we observed synucle-
inopathy after less than 10 months, as evidenced by the 
formation of abundant filamentous α-synuclein inclu-
sions and a severe impairment of motor behaviour. For 
the first time, we assessed neurodegeneration in relation 

to α-synuclein pathology by quantitating  the number of 
motor neurons and pS129 α-synuclein immunoreac-
tivity in spinal cord following intraperitoneal injection 
of assembled recombinant human A53T α-synuclein 
or cerebellar extract from a case with type II MSA fila-
ments, as determined by electron cryo-microscopy (cryo-
EM), thereby establishing a direct correlation between 
a specific MSA filament type and neurodegeneration. 
Finally, we analysed microglial cell morphology over 
time in animals injected intraperitoneally with assembled 
α-synuclein.

Materials and methods
Expression, purification and assembly of A53T α‑synuclein
Human A53T α-synuclein or human A53T α-synuclein 
lacking residues 71–82 (Δ71–82), which shows a greatly 
reduced ability to assemble into filaments [33], was 
expressed as described [34, 35]. Bacterial pellets were 
resuspended in 10  mM Tris–HCl, pH 7.4, containing 
protease inhibitor tablets (Roche), sonicated using a 
Vibracell ultrasonic probe (4 min, alternating between 5s 
ON and  5s OFF, at an amplitude of 40%) and centrifuged 
for 20  min at 20,000  rpm. Supernatants were passed 
through a 0.45 μm filter and loaded onto a HiTrap Q HP 
ion exchange column. Fractions were eluted using an 
increasing gradient of elution buffer (10  mM Tris–HCl, 
pH 7.4, 1 M NaCl). Following SDS-PAGE, they were pre-
cipitated with 250 μg/ml ammonium sulphate for 30 min 
at 4° C and centrifuged for 20 min at 20,000 rpm. Pellets 
were stored at −80° C. Following resuspension in 50 mM 
Tris–HCl, pH 7.4, 150 mM NaCl and a 15 min centrifu-
gation at 15,000 rpm, the supernatants were loaded onto 
a HiLoad 16/600 Superdex 75  pg gel filtration column 
and eluted with 50 mM Tris–HCl, 150 mM NaCl. Follow-
ing SDS-PAGE and ammonium sulphate precipitation, 
the pellets were resuspended in PBS and dialysed over-
night. Following a 30 min centrifugation at 45,000  rpm, 
supernatants were collected and stored at − 80 °C. Con-
centrations of purified α-synuclein were determined 
using a NanoDrop spectrophotometer (Thermo Fisher). 
Assembly of recombinant α-synuclein was performed as 
described [35]. The assemblies were sonicated using an 
XL2020 ultrasonic processor (Misonix) at output level 2 
(ON, 0.9 s, OFF 0.1 s, for a total of 5 s). The average fila-
ment length was 57 ± 2 nm (n = 200).

Administration of assembled A53T α‑synuclein
Experiments used 3-month-old heterozygous M83 mice. 
For nasal administration, mice received 50 μl of 400 μM 
assembled A53T α-synuclein (0.28 mg) over both nostrils 
daily for 28  days. Oral administration was achieved by 
daily gavage using 20-gauge plastic tubes (Instech Labo-
ratories) of 200 μl of 400 μM assembled A53T α-synuclein 
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(1.1  mg) for 28  days. Intravenous injection consisted of 
daily injections of 1  mg assembled A53T α-synuclein 
into the tail vein for 4 days. In some experiments, 100 μg, 
10 μg or 1 μg were injected. For intraperitoneal injection, 
200 μl of 400 μM assembled A53T α-synuclein (1.1 mg) 
or assembled Δ71–82 A53T α-synuclein was adminis-
tered. PBS was used as control. Motor impairment was 
assessed by Rotarod, using acceleration from 4 to 40 rpm 
over 5 min. The time was recorded when mice fell from 
the rod or when they rotated passively for two consecu-
tive revolutions. Severe motor impairment consisted of 
abnormal gait, abnormal posture when lifted by the tail, 
hindlimb paralysis and an abnormal righting reflex.

Multiple system atrophy
Cerebellum from a 68-year-old male with a neuropatho-
logically confirmed diagnosis of MSA was homogenised 
in PBS at 100 mg/ml or 200 mg/ml. At autopsy, numerous 
α-synuclein-positive inclusions were present in motor 
cortex, striatum, substantia nigra, pontine nuclei, inferior 
olive and cerebellum. They were glial cytoplasmic inclu-
sions and, for some regions, also neuronal cytoplasmic 
and intranuclear inclusions. Homogenates were soni-
cated using an XL2020 ultrasonic processor (Misonix) at 
output level 2 (ON, 0.9 s, OFF 0.1 s, for a total of 5 s). Fol-
lowing a 5 min centrifugation at 3,000 g, the supernatants 
were aliquoted and stored at -80° C until use. Injections 
were given intravenously, intramuscularly or intraperi-
toneally. As the control, cerebellum from a 68-year-old 
male without synucleinopathy was used at 200 mg/ml.

Antibodies
To detect assembled α-synuclein by immunohisto-
chemistry, we used two anti-pS129 α-synuclein anti-
bodies (clone 64, Wako and EP1536Y, Abcam) and two 
anti- α-synuclein antibodies (1903, Abcam and LB509, 
Covance). Phosphorylation-dependent antibodies were 
used at 1:1,000 and phosphorylation-independent anti-
bodies at 1:10,000. To assess microglia in the context 
of α-synuclein inclusions, anti-ionized calcium bind-
ing adaptor molecule 1 (Iba1) (019–9741, 1:500, Wako), 
a panel of epitope-specific anti-α-synuclein antibodies 
(α-Syn34-45, 1:200, BioLegend; α-Syn80-96, 1:100, Bio-
Legend; α-Syn117-122, 1:100, BioLegend) and an anti-
body specific for α-synuclein phosphorylated at S129 
(EP1536Y, 1:750 or ab184674 1:500, Abcam) were used. 
For negative-stain immunoelectron microscopy, we used 
ab59264 and PER4 at 1:100 or ab51253 at 1:50 [35]. For 
immunoblotting, antibodies were also used at 1:1,000. 
They included two mouse anti- α-synuclein antibodies 
(Syn 1, BD Biosciences; Syn211, Santa Cruz), as well as 
ab59264 and ab51253. To quantify motor neuron loss, an 
anti-NeuN antibody (Millipore) was used at 1:500.

Immunohistochemistry
Mice were perfused transcardially with 4% paraform-
aldehyde in 0.1  M PBS, pH 7.4. Brains and spinal cords 
were dissected and post-fixed overnight at 4°C, followed 
by cryo-protection in 20% sucrose in PBS for a minimum 
of 24 h. Coronal brain sections (40 μm) were cut using a 
VT1000 S vibratome (Leica). Transverse spinal cord sec-
tions  (30  μm) were cut on a Leica SM2400 microtome 
(Leica Microsystems). Sections were stored at 4° C in 
PBS containing 0.1% sodium azide. Endogenous peroxi-
dase activity was quenched by incubation in 0.3%  H2O2 
for 30 min. Following a brief wash in PBS + 0.1% Triton-
X100 (PBST), the sections were incubated in blocking 
buffer (PBST + 5% normal goat serum) for 15  min. This 
was followed by an overnight incubation at room tem-
perature with primary antibody in blocking buffer. After 
three rinses with PBST, the sections were incubated with 
biotin-conjugated secondary antibodies for 1  h at room 
temperature. Following a further three rinses with PBST, 
the avidin–biotin-conjugated complex was applied at 
room temperature for 30 min. The signal was visualised 
with the Vector VIP substrate kit (Vector Laboratories). 
Tissue sections were mounted on frosted end glass slides 
(Thermo Scientific) and coverslipped.

Fluorescence
Free-floating brain sections were incubated for 1  h in 
5% normal goat serum in PBST. For epitope-specific 
α-synuclein antibodies, tissue sections were first treated 
with 80% formic acid for 1  min at room temperature 
prior to blocking. Formic acid was not used for antibod-
ies specific for α-synuclein phosphorylated at S129. Sec-
tions were incubated in primary antibodies overnight at 
4° C. Secondary antibodies conjugated to Alexa Fluor 488 
or 594 were then added and incubated for 2  h at room 
temperature. Prior to labelling with DAPI, some sections 
were incubated with 3 μM pentameric formyl thiophene 
acetic acid (pFTAA) for 30  min, followed by 3 washes 
in PBST. Autofluorescence was quenched by immers-
ing sections for 30  s in TrueBlack Lipofuscin Autofluo-
rescence Quencher (Biotium) solution, followed by 3 
washes in distilled water. Sections were then mounted on 
SuperFrost slides (Thermo Fisher) and coverslipped with 
Vectashield Antifade mounting medium (Vector Labs). 
Images were acquired on an LSM 780 confocal micro-
scope (Zeiss).

Sarkosyl extraction and immunoblotting
Brains and spinal cords were homogenised at 10 ml/g in 
10  mM Tris–HCl, pH 7.4, 800  mM NaCl, 10% sucrose, 
1  mM EGTA and 1  mM PMSF with proteinase inhibi-
tors. The sarkosyl-insoluble fraction was prepared as 
described [36]. Pellets were resuspended in 150  μl/g 
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tissue of 50  mM Tris–HCl, pH 7.4, and stored at 4°C. 
For immunoblotting, samples were run on Novex 8% or 
10% Tris–Glycine gels (Thermo Fisher) and transferred 
onto nitrocellulose membranes. Blots were incubated 
overnight with primary antibodies, followed by either 
anti-mouse or anti-rabbit HRP-conjugated secondary 
antibodies, and the signal was visualised by enhanced 
chemiluminescence (GE Healthcare).

Immunoelectron microscopy
Immunoelectron microscopy was done as described [37]. 
Syn211 (Covance), Syn303 (Covance) and anti-pS129 
α-synuclein (Abcam) were used at 1:50. Images were 
acquired at 11,000 × using a Tecnai G2 Spirit transmis-
sion electron microscope at 120 kV.

Electron cryo‑microscopy
α-Synuclein filaments were extracted from the cerebel-
lum of a neuropathologically confirmed case of MSA, as 
described [38], placed on glow-discharged holey carbon 
gold grids (Quantifoil R1.2/1.3, 300 mesh) and plunge-
frozen in liquid ethane using an FEI Vitrobot Mark IV. 
Micrographs were acquired using a Gatan K2 summit 
detector in counting mode on a Titan Krios microscope 
(Thermo Fisher) at 300  kV. Reference-free 2D classifi-
cation and cryo-EM maps were obtained as described 
[38]. For assembled tau from Alzheimer’s disease brain, 
we have shown that the use of sarkosyl during extraction 
does not affect the structures of tau filaments [39].

Stereology
Stereology was carried out as described [40]. Briefly, we 
counted from 8 randomly chosen sections out of 96 sec-
tions/L3-L5 spinal cord. Section thickness was deter-
mined using StereoInvestigator 11 software. For each 
section, the outline of the region of interest was traced 
under an × 5 objective, starting from the middle of the 
central canal and contouring the grey matter of the ven-
tral horn. Using the optical fractionator probe (grid size: 
65 × 65 μm2; height: 22 μm; guard height: 3 μm; counting 
frame: 50 × 50 μm2), NeuN-positive cells, with a diameter 
of at least 30  μm and with their nuclei in the dissector 
volume, were counted using the × 100 objective, and the 
number of motor neurons per lumbar spinal cord calcu-
lated. The investigator was blinded with respect to the 
nature of the two groups.

Image quantitation
Photographs were taken using an Olympus BX41 micro-
scope equipped with a Nikon digital Sight DS-2Mv digi-
tal camera under a × 20 objective. Each picture amounted 
to 1,600 × 1,200 pixels. Immunoreactivity for pS129- 
α-synuclein was quantitated using the green channel of 

ImageJ. The threshold was set to 110 in greyscale. The 
circularity was 10-infinity. For assessment of microglial 
morphology, the investigator annotated Iba1-immuno-
reactive microglia based on morphology from photo-
graphs taken under a × 20 objective. The investigator was 
blinded with respect to the nature of the groups.

Statistics
Analyses were carried out using GraphPad Prism 7 soft-
ware. They included log-rank tests for survival data and 
unpaired one-tailed t-tests for rotarod data and electron 
micrograph measurements. The significance level was 
set at p < 0.05, with the Bonferroni correction for multi-
ple comparisons. For cell counting, a two-way ANOVA, 
followed by Dunnett’s or Tukey’s  multiple comparisons 
test and a one-way ANOVA, followed by Tukey’s multiple 
comparisons test, were used.

Results
Seeded aggregation and motor impairment following oral 
and nasal administration of assembled A53T α‑synuclein
Oral administration consisted in daily gavaging of het-
erozygous mice transgenic for human A53T α-synuclein 
(line M83) with 200  μl of 400  μM assembled A53T 
α-synuclein for 28  days. Nasal administration involved 
daily administration of 50 μl of 400 μM assembled A53T 
α-synuclein for 28 days. We used an antibody specific for 
α-synuclein phosphorylated at S129 to show widespread 
staining throughout brain and spinal cord 5  months 
after oral and nasal administration of assembled A53T 
α-synuclein (Fig. 1A,F). Assembled α-synuclein is phos-
phorylated at S129 in human brain [41, 42]. Brains 
and spinal cords were extracted 5  months after seed 
administration using sarkosyl. Western blotting of the 
sarkosyl-insoluble fraction showed α-synuclein bands 
of approximately 15  kDa (Fig.  1B,G). By immunoelec-
tron microscopy, α-synuclein filaments were present 
(Fig. 1C,H).

Following the administration of assembled A53T 
α-synuclein by either the oral or the nasal route,  M83± 
mice developed severe motor abnormalities characterised 
by abnormal posture and gait, hindlimb dysfunction, ina-
bility to right and, eventually, paralysis. Mean time from 
aggregate delivery to end stage disease was 195 ± 6 days 
(n = 10) after oral (Fig. 1D) and 170 ± 10 days (n = 6) fol-
lowing nasal (Fig.  1I) administration. Significant motor 
impairment was in evidence upon rotarod testing of mice 
6  months after oral administration of assembled A53T 
α-synuclein (Fig.  1E). When PBS was administered, no 
abnormalities were observed.

Staining for pS129 α-synuclein following oral adminis-
tration of seeds was present after 2 months in the nucleus 
of the solitary tract, dorsal motor nucleus of the vagus 
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nerve and intermediolateral spinal cord (Fig.  2A). After 
3–4 months, staining also appeared in the area postrema, 
hypoglossal nucleus, spinal trigeminal nucleus, reticular 
formation, raphe nuclei, inferior olive, thalamus, peri-
aqueductal grey, superior and inferior colliculi, medial 
longitudinal fasciculus and spinal cord white matter 
(Fig.  2B). The regions most affected at 5  months were 
the thalamus, hypothalamus, amygdala, basal forebrain, 
stria terminalis, periaqueductal grey, reticular formation 
and spinal cord (Fig. 2C). Small numbers of α-synuclein 
inclusions were also seen in pars compacta of the sub-
stantia nigra and ventral tegmental area.

Seeded aggregation and motor impairment 
following intravenous injection of assembled A53T 
α‑synuclein
M83± mice received 1  mg assembled A53T α-synuclein 
intravenously on 4 consecutive days. They developed 
synucleinopathy and progressive motor dysfunction 

and were culled after 156 ± 5 days (n = 4) (Fig. 3). Injec-
tions of smaller amounts of assembled A53T α-synuclein 
(100 μg, 10 μg, 1 μg) also resulted in motor dysfunction, 
but with longer incubation periods (Fig. 3D).

Motor neuron loss correlates with increased pS129 
α‑synuclein immunoreactivity after intraperitoneal 
injection of assembled A53T α‑synuclein
M83± mice received an intraperitoneal injection of 200 μl 
of 400  μM assembled A53T α-synuclein. As shown in 
Fig.  4, no additional staining for pS129 α-synuclein was 
observed one month after injection. At 3  months, the 
difference between mice injected with assembled A53T 
α-synuclein and PBS was 30%. It was 1200% at 5 months 
(Additional file 1: Figure 1). In mice injected with assem-
bled Δ71–82 A53T α-synuclein, immunoreactivity for 
pS129 α-synuclein was not significantly different from 
that of mice injected with PBS or of uninjected mice.

Mice injected with assembled A53T α-synuclein devel-
oped progressive motor impairment and were culled after 

Fig. 1 Synucleinopathy in  M83± mice following oral (A–E) and nasal (F–I) administration of assembled A53T α‑synuclein. A Staining of midbrain 
periaqueductal grey (PAG) and lumbar spinal cord (ventral horn) for pS129 α‑synuclein (Wako pSyn#64). Arrows denote perikaryal and arrowheads 
neuritic staining. Scale bars, 50 μm. B Immunoblots of sarkosyl‑insoluble material from brain and spinal cord using an antibody specific for 
pS129 α‑synuclein (Abcam ab51253). C Negative‑stain immunoelectron microscopy of filaments from brain and spinal cord using an antibody 
specific for pS129 α‑synuclein (Abcam ab51253). Scale bars, 50 nm. D Kaplan–Meier survival curves following oral administration of assembled 
A53T α‑synuclein (red) or PBS (purple). E Motor impairment on rotarod testing following oral administration of assembled A53T α‑synuclein (red) 
compared to controls (purple). Unpaired one‑tailed t‑test for 6‑month time‑point. *p = 0.03. F Staining of midbrain periaqueductal grey (PAG) and 
lumbar spinal cord (ventral horn) for pS129 α‑synuclein (Wako pSyn#64). Arrows denote perikaryal and arrowheads neuritic staining. Scale bars, 
50 μm. G Immunoblots of sarkosyl‑insoluble material from brain and spinal cord using an antibody specific for pS129 α‑synuclein (Abcam ab51253). 
H Negative‑stain immunoelectron microscopy of filaments from brain and spinal cord using an antibody specific for pS129 α‑synuclein (Abcam 
ab51253). Scale bars, 50 nm. I Kaplan–Meier survival curves following nasal administration of assembled A53T α‑synuclein (orange) or PBS (purple)
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155 ± 13  days (n = 13). Controls received an intraperito-
neal injection of 200 μl PBS and were culled 165 days later 
(n = 8). There was no staining for pS129 α-synuclein, nor 
were there motor symptoms. The effects of assembled 
A53T α-synuclein on the number of spinal cord motor 
neurons were compared with those of assembled Δ71–82 
A53T alpha-synuclein and PBS (n = 5) (Fig.  5, Additional 
file 4: Table 1). Mice were culled 1, 3 and 5 months after 
injection. At 5 months, mice injected with assembled A53T 
α-synuclein had lost approximately 70% of motor neurons 
and suffered from hindlimb paralysis. Three months after 
injection, there was a 20% reduction in the number of 
motor neurons, with no significant difference from PBS-
injected mice after 1 month. The number of motor neurons 
in Δ71–82 A53T α-synuclein-injected mice did not differ 
significantly from that of PBS-injected mice.

Seeded aggregation and motor impairment 
following injection of brain extract from multiple system 
atrophy
Cerebellum from a 68-year-old male who had died with 
a neuropathologically confirmed diagnosis of MSA 
was used. Numerous α-synuclein-positive glial and 
neuronal inclusions were present in cerebellar white 
matter (Fig. 6A). Following sarkosyl extraction and nega-
tive staining, α-synuclein filaments were in evidence 
(Fig.  6B,C). As described [38], they had a diameter of 

10  nm and a periodicity of 80–100  nm. Immunoelec-
tron microscopy with PER4 showed the decoration of 
filaments (Fig. 6B), consistent with previous findings [43]. 
We imaged sarkosyl-insoluble filaments by cryo-EM. 
Using reference-free 2D class averaging, we only saw type 
II filaments (Fig. 6D), as previously reported for cerebel-
lum from another case of MSA [38]. We determined the 
cryo-EM structures to resolutions sufficient for de novo 
atomic modelling (Fig.  6E, Table  1). They showed the 
presence of two protofilaments consisting of residues 
G14-F94 and G36-Q99. The resolution was 3.27 Å.

M83± mice were injected intravenously, intraperito-
neally and intramuscularly with MSA cerebellar extracts. 
They developed progressive motor impairment and were 
culled when exhibiting hindlimb paralysis. Staining for 
pS129 α-synuclein was present in brain and spinal cord 
of all cases with a distribution and in amounts similar to 
those of  M83+/+ mice with hindlimb paralysis.

For intravenous injection, mice received a daily injec-
tion of 100  μl of 100  mg/ml tissue over 4 consecutive 
days (equivalent to 40 mg tissue). They were culled after 
225 ± 19  days (n = 8). For intramuscular injection, mice 
received a single bilateral injection of 50, 100 or 200  μl 
of 200  mg/ml tissue (equivalent to 10, 20 or 40  mg tis-
sue) into gastrocnemius muscles. They were culled 
after 238 ± 41 (50 μl, n = 3), 174 ± 36 (100 μl, n = 8) and 
146 ± 29 (200  μl, n = 4) days. Control  M83± mice were 

Fig. 2 Staining for pS129 α‑synuclein (Wako pSyn#64) following oral administration of assembled A53T α‑synuclein to  M83± mice. A Two months 
after oral administration. SOL, solitary nucleus; DMNX, dorsal motor nucleus of the vagus nerve; IML, intermediolateral nucleus of the thoracic spinal 
cord. B Additional staining three and four months after oral administration. AP, area postrema; RET, reticular formation (gigantocellular nucleus, Gi); 
RN, raphe nucleus; XII, hypoglossal nucleus; PAG, periaqueductal grey; MLF, medial longitudinal fasciculus. C Additional staining five months after 
oral administration until endpoint. BNST, bed nucleus of the stria terminalis; HYP, hypothalamus (anterior nucleus, AHN); SPLH, lateral horn of the 
spinal cord; THAL, thalamus (reticular nucleus, TRN); AMYG, amygdala; SPLF, spinal lateral funiculus, SNPC, substantia nigra pars compacta; SNPR, 
substantia nigra pars reticulata; VTA, ventral tegmental area. Scale bars, 50 μm
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Fig. 3 Synucleinopathy in  M83± mice following intravenous injection of assembled A53T α‑synuclein. A Staining of midbrain periaqueductal grey 
(PAG) and lumbar spinal cord (ventral horn) for pS129 α‑synuclein (Wako pSyn#64). Arrows denote perikaryal and arrowheads neuritic staining. 
Scale bar, 50 μm. B Immunoblots of sarkosyl‑insoluble material from brain and spinal cord using an antibody specific for pS129 α‑synuclein (Abcam 
ab51253). C Negative‑stain immunoelectron microscopy of α‑synuclein filaments from brain and spinal cord using an antibody specific for pS129 
α‑synuclein (Abcam ab51253). Scale bar, 50 nm. D Kaplan–Meier survival curves following intravenous injection of different amounts of assembled 
A53T α‑synuclein or PBS. Gold, 1 mg; green, 100 μg; blue, 10 μg; magenta, 1 μg; purple, PBS
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Fig. 4 Staining of lumbar spinal cord from  M83± mice for pS129 α‑synuclein (Abcam, EP1536Y) following intraperitoneal injection of assembled 
A53T α‑synuclein. Staining was in evidence 3 and 5 months, but not 1 month, after injection. No specific staining was seen after 5 months in 
uninjected, PBS‑injected or  M83± mice injected with assembled Δ71–82 A53T α‑synuclein. The dashed line delineates the ventral horn. Scale bars, 
100 μm

Fig. 5 Motor neuron numbers in lumbar spinal cord of  M83± mice following intraperitoneal injection of PBS, assembled Δ71–82 A53T α‑synuclein 
and assembled A53T α‑synuclein. The number of motor neurons of PBS‑injected mice is taken as 100%. Two‑way ANOVA F(8,52) = 24.64, followed 
by Dunnett’s multiple comparisons test. **p < 0.005; ****p < 0.0001 (n = 5)
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injected with 100 μl cerebellar extract (200 mg/ml) from 
an age-matched male without synucleinopathy. They 
were culled after 460 days, when there was neither stain-
ing for pS129 α-synuclein nor motor dysfunction.

Ten  M83± mice were injected intraperitoneally with 
100 μl of 200 mg/ml MSA and control cerebellar extracts. 
Following the injection of MSA extracts, abundant 
α-synuclein inclusions developed in the central nervous 
system (Fig.  7A,B, Additional file  2:  Figure  2) and the 
average survival time was 247 ± 55 days. The lifespan of 
mice injected with control cerebellar extracts was not sig-
nificantly different from that of uninjected animals and 
there was no pS129 α-synuclein staining. Five months 

after the injection of MSA cerebellar extracts, mice had 
developed hindlimb paralysis and had lost approximately 
70% of motor neurons (Fig. 7C, Additional file 5 Table 2). 
Motor neurons were not lost in age-matched uninjected 
 M83± or control mice.

Changes in microglial cell morphology accompany 
neuronal α‑synuclein inclusions
Microglia and nerve cells with α-synuclein inclusions 
were labelled in brainstem (pons region) from 20-month-
old  M83+/+ mice. Using a panel of epitope-specific 
α-synuclein antibodies, as well as pFTAA, microglial 
cells were juxtaposed to nerve cells with α-synuclein 

Fig. 6 Type II α‑synuclein filaments extracted from MSA cerebellum. A Staining by ab1903 of abundant neuronal and glial α‑synuclein inclusions in 
cerebellar white matter. Scale bar, 100 μm. B Negative‑stain immunoelectron microscopy of α‑synuclein filaments extracted from MSA cerebellum. 
Ab59264 was used. Scale bar, 200 nm. C Negative‑stain electron microscopy of twisted α‑synuclein filament. Scale bar, 50 nm. D Reference‑free 2D 
class average spanning an entire crossover of filaments extracted from MSA cerebellum. Only type II filaments were present. E Cryo‑EM map of type 
II filaments from MSA cerebellum
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inclusions, often with their processes wrapped around 
these cells. pFTAA-labelled nerve cells were also immu-
noreactive for pS129 α-synuclein (Fig. 8).

Different states of microglia can be defined morpho-
logically [45]. Spinal cord sections from mice injected 
intraperitoneally with assembled A53T α-synuclein were 
stained for Iba1 and microglial cell morphologies assessed 
(Fig. 9, Additional file 3: Figure 3). One month after injec-
tion, most microglia were ramified, with a circular cell 
body and numerous processes extending into the neuro-
pil. By 3  months, they had shifted to a more dystrophic 
appearance (fivefold increase), with spheroidal, beaded, 
de-ramified or fragmented processes, as well as to a rod-
shaped appearance (threefold increase), with a narrow cell 
body and a few planar processes. In parallel, a doubling of 
hypertrophic microglia with short thickened and retracted 
processes and an enlarged cell body was observed. At 
5 months, ramified microglia could no longer be detected, 
with the proportion of dystrophic microglia continuing 
to increase. In PBS-injected  M83± mice, most microglial 
cells were ramified at all time-points. When compared 
to age-matched mice that had been injected with control 
cerebellar extracts, an approximately threefold increase in 
dystrophic microglia was observed at end-stage following 
the injection of cerebellar extracts from a case of MSA.

Discussion
We show that oral, nasal, intravenous and intraperitoneal 
administration of assembled A53T α-synuclein induced 
synucleinopathy in  M83± mice. The same was true 
when cerebellar extracts from a case of MSA with type II 
α-synuclein filaments were injected intravenously, intra-
muscularly or intraperitoneally. Synucleinopathy was 
defined by the presence of abundant immunoreactivity 
for pS129 α-synuclein in nerve cells and the development 
of motor impairment, resulting in hindlimb paralysis. 

Intraperitoneal injection of assembled A53T α-synuclein 
or cerebellar MSA extracts resulted in a reduction in spi-
nal cord motor neurons.

Following oral and nasal administration of assembled 
A53T α-synuclein, mice developed hindlimb paraly-
sis. Brains and spinal cords showed abundant pS129 
α-synuclein staining and α-synuclein filaments. After oral 
administration, staining was observed first in the soli-
tary tract nucleus, the dorsal motor nucleus of the vagus 
nerve and the spinal intermediolateral nucleus, followed 
by other brain and spinal cord regions. These findings are 
consistent with early autonomic nervous system involve-
ment, followed by spreading to other regions of the cen-
tral nervous system. They suggest that oral ingestion of 
α-synuclein filaments is sufficient for them to cross the 
epithelial lining of the gastrointestinal tract, before they 
are taken up by nerve cells in the enteric plexus and reach 
the brainstem by retrograde trans-synaptic transport 
along the vagus nerve, consistent with previous findings 
[25]. Experimental studies in rats have shown that path-
ological α-synuclein can be transported from the myen-
teric plexus via the vagus nerve to brain and spinal cord 
[44, 46].

In addition, our findings indicate that white matter 
tracts in the brain and spinal cord are affected follow-
ing the oral administration of assembled α-synuclein, 
consistent with recent observations that α-synuclein 
pathology accumulates in afferent sensory tracts, causing 
degeneration of myelinated fibres, and affects oligoden-
droglia [23, 24]. This is also consistent with studies in the 
human brain showing α-synuclein pathology in brain-
stem fibre tracts [47].

Unlike α-synuclein from wild-type mice, transgenic 
protein from  M83± mice has been reported to be deter-
gent-insoluble [48]. It remains to be seen if α-synuclein 
seeds can induce pathology over longer time periods in 
the absence of overexpression, as has been shown for 
Aβ seeds [49]. Following injection of assembled mouse 
α-synuclein into the muscle layers of pylorus and duode-
num, α-synuclein assembly, loss of dopaminergic neurons 
and motor impairment were reported in the substantia 
nigra of non-transgenic mice [50]. Moreover, intravenous 
injection of assembled human α-synuclein coupled to 
modified rabies virus glycoprotein resulted in a model of 
premotor PD in wild-type rats [51].

Nasal administration of assembled A53T α-synuclein 
also led to abundant inclusions and severe motor impair-
ment in  M83± mice. The injection of assembled mouse 
α-synuclein into the olfactory bulb of wild-type mice has 
been shown to lead to deficits in olfactory function and 
the spreading of α-synuclein inclusions to other brain 
regions [52].

Table 1 Cryo‑EM data collection and processing

Magnification 105,000

Voltage (kV) 300

Electron exposure (e–/Å2) 45.0

Defocus range (μm) −1.8 to −2.4

Pixel size (Å) 1.145

Symmetry imposed None

Initial particle images (no.) 39,798

Final particle images (no.) 36,247

Map resolution (Å) 3.27

FSC threshold 0.143

Helical twist (°) −1.36

Helical rise (Å) 4.70
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Transport through the blood, followed by crossing of 
the blood–brain barrier, may be the main route by which 
assembled α-synuclein reaches the central nervous sys-
tem following intravenous and intraperitoneal injections, 
which also gave rise to abundant α-synuclein inclusions 
and motor impairment. Five months after injection, 70% 
of spinal cord motor neurons had been lost and abundant 
α-synuclein inclusions were present, consistent with evi-
dence indicating that filamentous α-synuclein inclusions 
precede neurodegeneration [53]. These findings confirm 
previous work, which showed a severe loss of motor 
neurons in  M83± mice following the intramuscular 

injection of recombinant α-synuclein filaments [13], and 
extend these findings to intraperitoneal injection. Upon 
intraperitoneal injection of assembled Δ71–82 A53T 
α-synuclein, we failed to observe synucleinopathy.

We showed earlier that short filaments of α-synuclein 
form the majority of seed-competent species in  M83+/+ 
brains [35]. Cryo-EM structures identified type I and 
type II α-synuclein filaments in MSA brains [38] that 
differ from the structures of assembled recombinant 
α-synuclein [54–57]. We therefore investigated the 
effects of MSA cerebellar homogenates with type II 
α-synuclein filaments. Abundant α-synuclein inclusions 

Fig. 7 Synucleinopathy in  M83± mice following intraperitoneal injection of cerebellar extracts from an individual with neuropathologically 
confirmed MSA. A Staining of midbrain periaqueductal grey (PAG) and lumbar spinal cord (ventral horn) for pS129 α‑synuclein (Wako pSyn#64). 
Arrows denote perikaryal and arrowheads neuritic staining. Scale bars, 50 μm. B Immunoblots of sarkosyl‑insoluble material from brain and spinal 
cord using an antibody specific for pS129 α‑synuclein (Abcam ab51253). C Motor neuron numbers in lumbar spinal cord following intraperitoneal 
injection of extracts from control and MSA cerebellum. Comparison with uninjected mice. The number of motor neurons of mice injected with 
extracts from control cerebellum was taken as 100%. One‑way ANOVA F(3,16) = 127.5, followed by Tukey’s multiple comparisons test. ****p < 0.0001 
(n = 5)
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and severe motor impairment developed following 
intravenous, intramuscular and intraperitoneal injec-
tions. Five months after intraperitoneal injection of MSA 
homogenates, approximately 70% of motor neurons had 
been lost. We thus establish that type II α-synuclein fila-
ments can induce filament formation and neurodegener-
ation. It remains to be seen if the same is also true of type 
I filaments. Future studies will have to investigate how 
the structural differences between α-synuclein filaments 
from human brain and those assembled using recom-
binant protein influence prion-like spreading. Protein 
assemblies extracted from diseased human brains have 
a greater seeding ability than assemblies of recombinant 
proteins [58].

When injected intracerebrally into  M83± mice, MSA 
extracts were more potent than PD extracts in induc-
ing synucleinopathy [59–61]. However, the injection of 
pathological α-synuclein extracted from MSA brains into 
wild-type mice only induced α-synuclein aggregation in 
nerve cells [62]. These and other findings [38, 43, 63] sug-
gest that different conformers of assembled α-synuclein 
may underlie the pathologies of Lewy pathology disorders 

and MSA. However, despite the fact that the silver-stain-
ing properties of PD and MSA inclusions differ, silver 
staining was like that in PD and  M83+/+ mice following 
intracerebral injection of MSA seeds in  M83± mice [61]. 
Taken altogether, our findings indicate that the propaga-
tion of α-synuclein inclusions in M83 mice depends not 
only on the seeds, but also on the levels and properties of 
transgenically expressed α-synuclein.

Neuroinflammation is a common pathological char-
acteristic of major neurodegenerative diseases [64]. We 
investigated the relationship between nerve cell inclu-
sions and microglial cells in  M83+/+ mice. Microglia 
were juxtaposed to nerve cells with α-synuclein inclu-
sions. Unlike what has been reported previously [65, 66], 
we failed to observe α-synuclein- or pFTAA-positive 
inclusions in microglia. Nerve cells labelled by pFTAA 
were also pS129 α-synuclein-positive. A possible expla-
nation for this discrepancy could be genetic drift in the 
M83 line, which was bred and maintained in separate 
colonies. Technical differences cannot be excluded. A 
shift in microglial cell morphology from a predomi-
nantly ramified to a largely dystrophic appearance was 

Fig. 8 Microglia and α‑synuclein inclusions in 20‑month‑old M83 +/+ mice. A Iba1‑immunoreactive microglial cells envelop nerve cells 
immunoreactive with an antibody specific for pS129 α‑synuclein (ab184674). B Cells stained by pFTAA are also immunoreactive for pS129 
α‑synuclein (EP1536Y). C Iba1‑immunoreactive microglial cells envelop nerve cells stained by pFTAA. D Iba1‑immunoreactive microglial cells 
envelop nerve cells stained by an antibody specific for residues 34–45 of α‑synuclein (α‑Syn34‑45, BioLegend). E Iba1‑immunoreactive microglial 
cells envelop nerve cells stained by an antibody specific for residues 80–96 of α‑synuclein (α‑Syn80‑96, BioLegend). F Iba1‑immunoreactive 
microglial cells envelop nerve cells stained by an antibody specific for residues 117–122 of α‑synuclein (α‑Syn117‑122, BioLegend). Scale bars, 
100 μm. (019–9741 Wako was used for all Iba1 stainings)
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detected following intraperitoneal injection of either 
assembled A53T α-synuclein or cerebellar extract 
from an MSA patient, indicating a correlation between 
α-synuclein aggregation and microglial cell morphology. 
Similar changes in microglial cell morphology have been 
described in human brains following the development of 
tau or α-synuclein inclusions [67].

Conclusion
Upon peripheral administration of assembled A53T 
α-synuclein or cerebellar homogenates from a case of 
MSA, we observed a close relationship between the for-
mation of α-synuclein inclusions in nerve cells and neu-
rodegeneration, accompanied by a shift in microglial cell 
morphology.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40478‑ 021‑ 01291‑7.

Additional file 1. Supplementary Figure 1 pS129 α‑Synuclein immuno‑
reactivity in lumbar spinal cord of  M83+/‑ mice following intraperitoneal 
injection of PBS, assembled Δ71‑82 A53T α‑synuclein and assembled A53T 
α‑synuclein. pS129 α‑Synuclein immunoreactivity of PBS‑injected mice 
is taken as 100%. Two‑way ANOVA F(8,60) = 26, p < 0.0001, followed by 
Tukey’s multiple comparisons test. ****p < 0.0001.

Additional file 2. Supplementary Figure 2 pS129 α‑Synuclein immuno‑
reactivity in lumbar spinal cord of  M83+/‑ mice following intraperitoneal 
injection of extracts from control and MSA cerebellum. Uninjected  M83+/‑ 
mice show comparable pS129 immunoreactivity to those injected with 
control cerebellum. One‑way ANOVA F(2,12) = 64.53, p < 0.0001, followed 
by Tukey’s multiple comparisons test. ****p < 0.0001.

Additional file 3. Supplementary Figure 3 Iba1 immunoreactivity in 
lumbar spinal cord of  M83+/‑ mice following intraperitoneal injection of 
assembled A53T α‑synuclein. One month post‑injection, the vast majority 
of microglia appeared ramified (black arrows). Three months post‑injec‑
tion, hypertrophic (white arrowhead) and dystrophic (green arrowhead) 
microglia were also present. Five months post‑injection, the majority of 
microglia appeared dystrophic (green arrowhead). Hypertrophic (white 
arrowhead) and rod microglia (blue arrowhead) were also present.

Additional file 4. Supplementary Table 1 Motor neuron numbers 
in lumbar spinal cord of  M83+/‑ mice following intraperitoneal injec‑
tion of PBS, assembled Δ71‑82 A53T α‑synuclein and assembled A53T 
α‑synuclein.

Additional file 5. Supplementary Table 2 Motor neuron numbers in 
lumbar spinal cord of  M83+/‑ mice following intraperitoneal injection of 
extracts from control and MSA cerebellum. Comparison with uninjected 
 M83+/‑ mice.

Control cerebellum

59%

22%

18%

1%

MSA cerebellum

17%

1%

69%

13%

Assembled A53T α-synuclein Assembled A53T α-synuclein Assembled A53T α-synuclein

1 month 3 months 5 months

75%

12%

3%

10%

ramified 
rod
hypertrophic
dystrophic

14%

14%

49%

23%

69%

18%

13%

Spinal cord

Fig. 9 Quantitation of lumbar spinal cord microglial cells of different morphologies in mice injected intraperitoneally with assembled A53T 
α‑synuclein or with MSA brain extract. One month after injection of assembled A53T α‑synuclein or control cerebellar extracts, most microglial cells 
were ramified. At 3 months after injection of assembled A53T α‑synuclein, there was an increase in dystrophic microglia. At 5 months after injection 
of assembled A53T α‑synuclein and in end‑stage mice injected with MSA cerebellar extracts, dystrophic microglia predominated and ramified 
microglia were almost absent
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