732 research outputs found

    The galaxy-mass correlation function measured from weak lensing in the Sloan Digital Sky Survey

    Get PDF
    We present galaxy-galaxy lensing measurements over scales 0.025 to 10 h(-1) Mpc in the Sloan Digital Sky Survey (SDSS). Using a flux-limited sample of 127,001 lens galaxies with spectroscopic redshifts and mean luminosity [L] similar to L-* and 9,020,388 source galaxies with photometric redshifts, we invert the lensing signal to obtain the galaxy-mass correlation function xi(gm). We find xi(gm) is consistent with a power law, xi(gm) (r = r(0))(-gamma), with best-fit parameters gamma = 1.79 +/- 0.06 and r(0) (5.4 +/- 0.7) (0.27/Omega(m))(1/gamma) h(-1) Mpc. At fixed separation, the ratio xi(gg)/xi(gm) = b/r, where b is the bias and r is the correlation coefficient. Comparing with the galaxy autocorrelation function for a similarly selected sample of SDSS galaxies, we find that b/r is approximately scale-independent over scales 0.2 - 6.7 h(-1) Mpc, with mean [b/r] = (1.3 +/- 0.2) (Omega(m)/0.27). We also find no scale dependence in b/r for a volume-limited sample of luminous galaxies (-23.0 < M-r < -21.5). The mean b/r for this sample is [b/r](Vlim) = (2.0 +/- 0.7) (Omega(m)/0.27). We split the lens galaxy sample into subsets based on luminosity, color, spectral type, and velocity dispersion and see clear trends of the lensing signal with each of these parameters. The amplitude and logarithmic slope of xi(gm) increase with galaxy luminosity. For high luminosities (L similar to 5 L-*), xi(gm) deviates significantly from a power law. These trends with luminosity also appear in the subsample of red galaxies, which are more strongly clustered than blue galaxies

    Radiation from a D-dimensional collision of shock waves: first order perturbation theory

    Get PDF
    We study the spacetime obtained by superimposing two equal Aichelburg-Sexl shock waves in D dimensions traveling, head-on, in opposite directions. Considering the collision in a boosted frame, one shock becomes stronger than the other, and a perturbative framework to compute the metric in the future of the collision is setup. The geometry is given, in first order perturbation theory, as an integral solution, in terms of initial data on the null surface where the strong shock has support. We then extract the radiation emitted in the collision by using a D-dimensional generalisation of the Landau-Lifschitz pseudo-tensor and compute the percentage of the initial centre of mass energy epsilon emitted as gravitational waves. In D=4 we find epsilon=25.0%, in agreement with the result of D'Eath and Payne. As D increases, this percentage increases monotonically, reaching 40.0% in D=10. Our result is always within the bound obtained from apparent horizons by Penrose, in D=4, yielding 29.3%, and Eardley and Giddings, in D> 4, which also increases monotonically with dimension, reaching 41.2% in D=10. We also present the wave forms and provide a physical interpretation for the observed peaks, in terms of the null generators of the shocks.Comment: 27 pages, 11 figures; v2 some corrections, including D dependent factor in epsilon; matches version accepted in JHE

    A specific case in the classification of woods by FTIR and chemometric: discrimination of Fagales from Malpighiales

    Get PDF
    Fourier transform infrared (FTIR) spectroscopic data was used to classify wood samples from nine species within the Fagales and Malpighiales using a range of multivariate statistical methods. Taxonomic classification of the family Fagaceae and Betulaceae from Angiosperm Phylogenetic System Classification (APG II System) was successfully performed using supervised pattern recognition techniques. A methodology for wood sample discrimination was developed using both sapwood and heartwood samples. Ten and eight biomarkers emerged from the dataset to discriminate order and family, respectively. In the species studied FTIR in combination with multivariate analysis highlighted significant chemical differences in hemicelluloses, cellulose and guaiacyl (lignin) and shows promise as a suitable approach for wood sample classification

    High energy emission from microquasars

    Full text link
    The microquasar phenomenon is associated with the production of jets by X-ray binaries and, as such, may be associated with the majority of such systems. In this chapter we briefly outline the associations, definite, probable, possible, and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng and G.E. Romero (eds.), to be published by Kluwer Academic Publishers, Dordrecht, 2004. (19 pages

    Lymphocyte Modulation with FTY720 Improves Hemorrhagic Shock Survival in Swine

    Get PDF
    The inflammatory response to severe traumatic injury results in significant morbidity and mortality. Lymphocytes have recently been identified as critical mediators of the early innate immune response to ischemia-reperfusion injury. Experimental manipulation of lymphocytes following hemorrhagic shock may prevent secondary immunologic injury in surgical and trauma patients. The objective of this study is to evaluate the lymphocyte sequestration agent FTY720 as an immunomodulator following experimental hemorrhagic shock in a swine liver injury model. Yorkshire swine were anesthetized and underwent a grade III liver injury with uncontrolled hemorrhage to induce hemorrhagic shock. Experimental groups were treated with a lymphocyte sequestration agent, FTY720, (n = 9) and compared to a vehicle control group (n = 9). Animals were observed over a 3 day survival period after hemorrhage. Circulating total leukocyte and neutrophil counts were measured. Central lymphocytes were evaluated with mesenteric lymph node and spleen immunohistochemistry (IHC) staining for CD3. Lung tissue infiltrating neutrophils were analyzed with myeloperoxidase (MPO) IHC staining. Relevant immune-related gene expression from liver tissue was quantified using RT-PCR. The overall survival was 22.2% in the vehicle control and 66.7% in the FTY720 groups (p = 0.081), and reperfusion survival (period after hemorrhage) was 25% in the vehicle control and 75% in the FTY720 groups (p = 0.047). CD3+ lymphocytes were significantly increased in mesenteric lymph nodes and spleen in the FTY720 group compared to vehicle control, indicating central lymphocyte sequestration. Lymphocyte disruption significantly decreased circulating and lung tissue infiltrating neutrophils, and decreased expression of liver immune-related gene expression in the FTY720 treated group. There were no observed infectious or wound healing complications. Lymphocyte sequestration with FTY720 improves survival in experimental hemorrhagic shock using a porcine liver injury model. These results support a novel and clinically relevant lymphocyte immunomodulation strategy to ameliorate secondary immune injury in hemorrhagic shock

    Rise of the Earliest Tetrapods: An Early Devonian Origin from Marine Environment

    Get PDF
    Tetrapod fossil tracks are known from the Middle Devonian (Eifelian at ca. 397 million years ago - MYA), and their earliest bony remains from the Upper Devonian (Frasnian at 375–385 MYA). Tetrapods are now generally considered to have colonized land during the Carboniferous (i.e., after 359 MYA), which is considered to be one of the major events in the history of life. Our analysis on tetrapod evolution was performed using molecular data consisting of 13 proteins from 17 species and different paleontological data. The analysis on the molecular data was performed with the program TreeSAAP and the results were analyzed to see if they had implications on the paleontological data collected. The results have shown that tetrapods evolved from marine environments during times of higher oxygen levels. The change in environmental conditions played a major role in their evolution. According to our analysis this evolution occurred at about 397–416 MYA during the Early Devonian unlike previously thought. This idea is supported by various environmental factors such as sea levels and oxygen rate, and biotic factors such as biodiversity of arthropods and coral reefs. The molecular data also strongly supports lungfish as tetrapod's closest living relative

    Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice

    Get PDF
    Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke. Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood. Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 +/- 22.7 mm3 vs. 84.7 +/- 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 +/- 28.49 mm3 vs. 69.6 +/- 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals. Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes

    Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD

    Get PDF
    BACKGROUND: Identifying patients with COPD at increased risk of poor outcomes is challenging due to disease heterogeneity. Potential biomarkers need to be readily available in real-life clinical practice. Blood eosinophil counts are widely studied but few studies have examined the prognostic value of blood neutrophil counts (BNC). METHODS: In a large population-based COPD registry in the East of Scotland (TARDIS: Tayside Allergic and Respiratory Disease Information System), BNC were compared to measures of disease severity and mortality for up to 15 years follow-up. Potential mechanisms of disease modification by BNC were explored in a nested microbiome substudy. RESULTS: 178,120 neutrophil counts were obtained from 7220 people (mean follow up 9 years) during stable disease periods. Median BNC was 5200cells/μL (IQR 4000-7000cells/μL). Mortality rates among the 34% of patients with elevated BNCs (defined as 6000-15000cells/μL) at the study start were 80% higher (14.0/100 person years v 7.8/100py, P &lt; 0.001) than those with BNC in the normal range (2000-6000cells/μL). People with elevated BNC were more likely to be classified as GOLD D (46% v 33% P &lt; 0.001), have more exacerbations (mean 2.3 v 1.3/year, P &lt; 0.001), and were more likely to have severe exacerbations (13% vs. 5%, P &lt; 0.001) in the following year. Eosinophil counts were much less predictive of these outcomes. In a sub-cohort (N = 276), patients with elevated BNC had increased relative abundance of Proteobacteria and reduced microbiome diversity. CONCLUSIONS: High BNC may provide a useful indicator of risk of exacerbations and mortality in COPD patients
    corecore