We study the spacetime obtained by superimposing two equal Aichelburg-Sexl
shock waves in D dimensions traveling, head-on, in opposite directions.
Considering the collision in a boosted frame, one shock becomes stronger than
the other, and a perturbative framework to compute the metric in the future of
the collision is setup. The geometry is given, in first order perturbation
theory, as an integral solution, in terms of initial data on the null surface
where the strong shock has support. We then extract the radiation emitted in
the collision by using a D-dimensional generalisation of the Landau-Lifschitz
pseudo-tensor and compute the percentage of the initial centre of mass energy
epsilon emitted as gravitational waves. In D=4 we find epsilon=25.0%, in
agreement with the result of D'Eath and Payne. As D increases, this percentage
increases monotonically, reaching 40.0% in D=10. Our result is always within
the bound obtained from apparent horizons by Penrose, in D=4, yielding 29.3%,
and Eardley and Giddings, in D> 4, which also increases monotonically with
dimension, reaching 41.2% in D=10. We also present the wave forms and provide a
physical interpretation for the observed peaks, in terms of the null generators
of the shocks.Comment: 27 pages, 11 figures; v2 some corrections, including D dependent
factor in epsilon; matches version accepted in JHE