264 research outputs found

    Effect of physical heterogeneity on the electromigration of nitrate in layered granular porous media

    Get PDF
    The effect of physical heterogeneity on the electrokinetic (EK) transport of nitrate, an electron acceptor frequently used for anaerobic biodegradation, was investigated experimentally within saturated granular porous media comprising two layers of high and low hydraulic conductivity (K) material. Two hypotheses were tested: firstly, that the presence of layered physical heterogeneity will generate non-uniformities in the electric field; and secondly that this would create non-uniform electromigration of ions resulting in an additional nitrate flux into the lower-K layer. Experiments were conducted in bench-top test cells that contained electrode and sediment chambers. An aqueous nitrate solution (0, 0.1, 1 and 5 g-NO3 L−1) was added at the cathode and the experiments run with an idealised mixture of glass beads and kaolinite, and natural sediment and kaolinite. A constant current (1.6 A m−2) was applied in all experiments. Results showed elevated voltage differences between layers in heterogeneous experiments compared to equivalent homogenous experiments. Furthermore, nitrate concentrations are elevated in the low-K material in heterogeneous compared with homogeneous systems. Using predicted values this is shown to be a function of a transverse flux associated with the voltage difference between layers. The importance of this phenomena at field scale for delivery of an amendment (i.e., electron acceptor, donor or nutrient) by EK for bioremediation is presented in an electron balance model. Overall, this research establishes and quantifies a previously unreported important phenomenon in the electrokinetic transport literature that enhance the application of this technology for bioremediation of contaminated aquifers

    Determining the temporal profile of intracranial pressure changes following transient stroke in an ovine model

    Get PDF
    Cerebral edema and elevated intracranial pressure (ICP) are the leading cause of death in the first week following stroke. Despite this, current treatments are limited and fail to address the underlying mechanisms of swelling, highlighting the need for targeted treatments. When screening promising novel agents, it is essential to use clinically relevant large animal models to increase the likelihood of successful clinical translation. As such, we sought to develop a survival model of transient middle cerebral artery occlusion (tMCAO) in the sheep and subsequently characterize the temporal profile of cerebral edema and elevated ICP following stroke in this novel, clinically relevant model. Merino-sheep (27M;31F) were anesthetized and subject to 2 h tMCAO with reperfusion or sham surgery. Following surgery, animals were allowed to recover and returned to their home pens. At preselected times points ranging from 1 to 7 days post-stroke, animals were re-anesthetized, ICP measured for 4 h, followed by imaging with MRI to determine cerebral edema, midline shift and infarct volume (FLAIR, T2 and DWI). Animals were subsequently euthanized and their brain removed for immunohistochemical analysis. Serum and cerebrospinal fluid samples were also collected and analyzed for substance P (SP) using ELISA. Intracranial pressure and MRI scans were normal in sham animals. Following stroke, ICP rose gradually over time and by 5 days was significantly (p < 0.0001) elevated above sham levels. Profound cerebral edema was observed as early as 2 days post-stroke and continued to evolve out to 6 days, resulting in significant midline shift which was most prominent at 5 days post-stroke (p < 0.01), in keeping with increasing ICP. Serum SP levels were significantly elevated (p < 0.01) by 7 days post-tMCAO. We have successfully developed a survival model of ovine tMCAO and characterized the temporal profile of ICP. Peak ICP elevation, cerebral edema and midline shift occurred at days 5-6 following stroke, accompanied by an elevation in serum SP. Our findings suggest that novel therapeutic agents screened in this model targeting cerebral edema and elevated ICP would most likely be effective when administered prior to 5 days, or as early as possible following stroke onset.Annabel J. Sorby-Adams, Anna V. Leonard, Levi E. Elms, Oana C. Marian, Jan W. Hoving, Nawaf Yassi, Robert Vink, Emma Thornton and Renée J. Turne

    Mannosylation in C andida albicans : role in cell wall function and immune recognition

    Get PDF
    The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post-translational modifications being the addition of O- and N-linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O- and N-linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host-fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Social Work Theories and Practice with Battered Women: A Conflict-of-Values Analysis

    Full text link
    In the 1970s, wife abuse became a concern of sociologists, feminists, and family theorists. The new perspectives they brought to the problem, which focused more on social factors than on individual pathology, challenged social workers to examine how their practice and assumptions perpetuated the problem. This article investigates how the social work literature has been affected by new theories of domestic violence and analyzes the impact that these theories have had on practice with battered women.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67024/2/10.1177_088610998700200205.pd

    Insights into the Molecular Evolution of the PDZ/LIM Family and Identification of a Novel Conserved Protein Motif

    Get PDF
    The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call ‘ALP-like motif’ (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family
    • 

    corecore