753 research outputs found

    Evolution of Labrador Sea–Baffin Bay: Plate or Plume Processes?

    Get PDF
    Breakup between Greenland and Canada resulted in oceanic spreading in the Labrador Sea and Baffin Bay. These ocean basins are connected through the Davis Strait, a bathymetric high comprising primarily continental lithosphere, and the focus of the West Greenland Tertiary volcanic province. It has been suggested that a mantle plume facilitated this breakup and generated the associated magmatism. Plume-driven breakup predicts that the earliest, most extensive rifting, magmatism and initial seafloor spreading starts in the same locality, where the postulated plume impinged. Observations from the Labrador Sea–Baffin Bay area do not accord with these predictions. Thus, the plume hypothesis is not confirmed at this locality unless major ad hoc variants are accepted. A model that fits the observations better involves a thick continental lithospheric keel of orogenic origin beneath the Davis Strait that blocked the northward-propagating Labrador Sea rift resulting in locally enhanced magmatism. The Davis Strait lithosphere was thicker and more resilient to rifting because the adjacent Paleoproterozoic Nagssugtoqidian and Torngat orogenic belts contain structures unfavourably orientated with respect to the extensional stress field at the time

    Multipitched plasmonic nanoparticle grating for broadband light enhancement in white light‑emitting organic diodes

    Get PDF
    We apply regular arrays of plasmonic nanodisks to enhance light emission from an organic white light-emitting diode (WOLED). To achieve broadband enhancement, we apply, first, aluminum as a nanodisk material with moderate loss throughout the whole visible spectral range. Second, broadband light coupling is mediated by surface lattice resonances from a multipitch array built from two superimposed gratings with different grating constants formed by elliptic and circular nanodisks. To demonstrate the viability of this concept, the grating structure was embedded in the hole transport layer of a solution-processed phosphorescent WOLED exhibiting a current efficiency of 2.1 cd/A at 1000 cd/m2. The surface lattice resonances in the grating raise the current efficiency of the device by 23% to 2.6 cd/A at 1000 cd/m2, while the device emission changes from a neutral white to a warm white appearance with CIE1931 (x,y) coordinates of (0.361, 0.352) and (0.404, 0.351), respectively. The WOLED was characterized in detail optically by extinction and angle-resolved photoluminescence and as well by electroluminescence measurements for its opto-electronic characteristics. The experimental results agree well with finite-difference time domain simulations that aim at a better understanding of the underlying physical mechanisms. In summary, our work presents a novel versatile approach for achieving broadband enhancement of light emission in WOLEDs over a wide spectral range.Peer Reviewe

    Raptor research during the COVID-19 pandemic provides invaluable opportunities for conservation biology

    Get PDF
    Authors acknowledge financial support from: the Dean Amadon Grant of the Raptor Research Foundation (to PS); the Raptor Research and Conservation Foundation, Mumbai, and the University of Oxford's Global Challenges Research Fund through the Ind-Ox initiative (KCD00141-AT13.01) (both to NK), and the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society (NGS-82515R-20) (both to CR).Research is underway around the world to examine how a wide range of animal species have responded to reduced levels of human activity during the COVID-19 pandemic. In this perspective article, we argue that raptors are particularly well-suited for investigating potential ‘anthropause’ effects, and that the resulting insights will provide much-needed impetus for global conservation efforts. Lockdowns likely alter many of the extrinsic factors that normally limit raptor populations. These environmental changes are in turn expected to influence – mediated by behavioral and physiological responses – the intrinsic (demographic) factors that ultimately determine raptor population levels and distributions. Using this framework, we identify a range of research opportunities and conservation challenges that have arisen during the pandemic. The COVID-19 anthropause allows raptor researchers to address fundamental and applied research objectives in a large-scale, quasi-experimental, well-replicated manner. Importantly, it will be possible to separate the effects of human disturbance and anthropogenic landscape modifications. We explain how high-quality datasets, accumulated for a diverse range of raptor species before, during, and after COVID-19 lockdowns, can be leveraged for powerful comparative analyses that attempt to identify drivers of particular response types. To facilitate and coordinate global collaboration, we are hereby launching the ‘Global Anthropause Raptor Research Network’ (GARRN). We invite the international raptor research community to join this inclusive and diverse group, to tackle ambitious analyses across geographic regions, ecosystems, species, and gradients of lockdown perturbation. Under the most tragic of circumstances, the COVID-19 anthropause has afforded an invaluable opportunity to significantly boost global raptor conservation.Publisher PDFPeer reviewe

    The impact of plasmonic electrodes on the photocarrier extraction of inverted organic bulk heterojunction solar cells

    Get PDF
    Nano-patterning the semiconducting photoactive layer/back electrode interface of organic photovoltaic devices is a widely accepted approach to enhance the power conversion efficiency through the exploitation of numerous photonic and plasmonic effects. Yet, nano-patterning the semiconductor/metal interface leads to intertwined effects that impact the optical as well as the electrical characteristic of solar cells. In this work we aim to disentangle the optical and electrical effects of a nano-structured semiconductor/metal interface on the device performance. For this, we use an inverted bulk heterojunction P3HT:PCBM solar cell structure, where the nano-patterned photoactive layer/back electrode interface is realized by patterning the active layer with sinusoidal grating profiles bearing a periodicity of 300 nm or 400 nm through imprint lithography while varying the photoactive layer thickness (LPAL) between 90 and 400 nm. The optical and electrical device characteristics of nano-patterned solar cells are compared to the characteristics of control devices, featuring a planar photoactive layer/back electrode interface. We find that patterned solar cells show for an enhanced photocurrent generation for a LPAL above 284 nm, which is not observed when using thinner active layer thicknesses. Simulating the optical characteristic of planar and patterned devices through a finite-difference time-domain approach proves for an increased light absorption in presence of a patterned electrode interface, originating from the excitation of propagating surface plasmon and dielectric waveguide modes. Evaluation of the external quantum efficiency characteristic and the voltage dependent charge extraction characteristics of fabricated planar and patterned solar cells reveals, however, that the increased photocurrents of patterned devices do not stem from an optical enhancement but from an improved charge carrier extraction efficiency in the space charge limited extraction regime. Presented findings clearly demonstrate that the improved charge extraction efficiency of patterned solar cells is linked to the periodic surface corrugation of the (back) electrode interface.Peer Reviewe

    Online-extractability in the quantum random-oracle model

    Get PDF
    We show the following generic result. Whenever a quantum query algorithm in the quantum random-oracle model outputs a classical value that is promised to be in some tight relation with for some , then can be efficiently extracted with almost certainty. The extraction is by means of a suitable simulation of the random oracle and works *online*, meaning that it is *straightline*, i.e., without rewinding, and *on-the-fly*, i.e., during the protocol execution and without disturbing it. The technical core of our result is a new commutator bound that bounds the operator norm of the commutator of the unitary operator that describes the evolution of the compressed oracle (which is used to simulate the random oracle above) and of the measurement that extracts . We show two applications of our generic online extractability result. We show *tight* online extractability of commit-and-open -protocols in the quantum setting, and we offer the first non-asymptotic post-quantum security proof of the *textbook* Fujisaki-Okamoto transformation, i.e, without adjustments to facilitate the proof.</p

    Approximate tight-binding sum rule for the superconductivity related change of c-axis kinetic energy in multilayer cuprate superconductors

    Full text link
    We present an extension of the c-axis tight-binding sum rule discussed by Chakravarty, Kee, and Abrahams [Phys. Rev. Lett. 82, 2366 (1999)] that applies to multilayer high-Tc cuprate superconductors (HTCS) and use it to estimate--from available infrared data--the change below Tc of the c-axis kinetic energy, Hc, in YBa2Cu3O(7-delta) (delta=0.45,0.25,0.07), Bi2Sr2CaCu2O8, and Bi2Sr2Ca2Cu3O10. In all these compounds Hc decreases below Tc and except for Bi2Sr2CaCu2O8 the change of Hc is of the same order of magnitude as the condensation energy. This observation supports the hypothesis that in multilayer HTCS superconductivity is considerably amplified by the interlayer tunnelling mechanism.Comment: 6 pages, 2 figure

    Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica

    Get PDF
    Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the response regulator PmrA, but the signalling pathway(s) that mediates this response has thus far remained unexplored. Here we report that this activation requires both PmrA's cognate sensor kinase PmrB, which had been previously shown to respond to Fe(3+) and Al(3+), and PmrA's post-translational activator PmrD. Substitution of a conserved histidine or of either one of four conserved glutamic acid residues in the periplasmic domain of PmrB severely decreased or abolished the mild acid-promoted transcription of PmrA-activated genes. The PmrA/PmrB system controls lipopolysaccharide modifications mediating resistance to the antibiotic polymyxin B. Wild-type Salmonella grown at pH 5.8 were > 100 000-fold more resistant to polymyxin B than organisms grown at pH 7.7. Our results suggest that protonation of the PmrB periplasmic histidine and/or of the glutamic acid residues activate the PmrA protein, and that mild acid promotes cellular changes resulting in polymyxin B resistance

    The influence of substrate temperature on growth of para-sexiphenyl thin films on Ir{111} supported graphene studied by LEEM

    Get PDF
    The growth of para-sexiphenyl (6P) thin films as a function of substrate temperature on Ir{111} supported graphene flakes has been studied in real-time with Low Energy Electron Microscopy (LEEM). Micro Low Energy Electron Diffraction (\mu LEED) has been used to determine the structure of the different 6P features formed on the surface. We observe the nucleation and growth of a wetting layer consisting of lying molecules in the initial stages of growth. Graphene defects -- wrinkles -- are found to be preferential sites for the nucleation of the wetting layer and of the 6P needles that grow on top of the wetting layer in the later stages of deposition. The molecular structure of the wetting layer and needles is found to be similar. As a result, only a limited number of growth directions are observed for the needles. In contrast, on the bare Ir{111} surface 6P molecules assume an upright orientation. The formation of ramified islands is observed on the bare Ir{111} surface at 320 K and 352 K, whereas at 405 K the formation of a continuous layer of upright standing molecules growing in a step flow like manner is observed.Comment: 9 pages, 7 figures, Revised Version as accepted for publication in Surface Scienc

    Socioeconomic differences in working life expectancy:a scoping review

    Get PDF
    Background: In the last decade, interest in working life expectancy (WLE) and socioeconomic differences in WLE has grown considerably. However, a comprehensive overview of the socioeconomic differences in WLE is lacking. The aim of this review is to systematically map the research literature to improve the insight on differences in WLE and healthy WLE (HWLE) by education, occupational class and income while using different ways of measuring and estimating WLE and to define future research needs. Methods: A systematic search was carried out in Web of Science, PubMed and EMBASE and complemented by relevant publications derived through screening of reference lists of the identified publications and expert knowledge. Reports on differences in WLE or HWLE by education, occupational class or income, published until November 2022, were included. Information on socioeconomic differences in WLE and HWLE was synthesized in absolute and relative terms. Results: A total of 26 reports from 21 studies on educational and occupational class differences in WLE or HWLE were included. No reports on income differences were found. On average, WLE in persons with low education is 30% (men) and 27% (women) shorter than in those with high education. The corresponding numbers for occupational class difference were 21% (men) and 27% (women). Low-educated persons were expected to lose more working years due to unemployment and disability retirement than high-educated persons. Conclusions: The identified socioeconomic inequalities are highly relevant for policy makers and pose serious challenges for equitable pension policies. Many policy interventions aimed at increasing the length of working life follow a one-size-fits-all approach which does not take these inequalities into account. More research is needed on socioeconomic differences in HWLE and potential influences of income on working life duration.</p
    corecore