1,604 research outputs found

    Economic Damage and Host Preference of Lepidopterous Pests of Major Warm Season Turfgrasses of Hawaii

    Get PDF
    The four major lepidopterous pests of turfgrasses of Hawaii are the grass webworm, Herpetogramma licarisalis (Walker), (GWW); lawn armyworm, Spodoptera mauritia (Boisduval), (LAW); black cutworm, Agrostis ipsilon (Hufnagle), (BCW); and fiery skipper, Hylephila phylaeus (Drury), (FS). The effects of different densities of larvae of these four insects on development of feeding injury to 'Sunturf’ bermudagrass, Cynodon magennisii (Hurcombe), were determined in 12.7 cm diameter pots in a glasshouse. Effects of diets of different turfgrasses on larval development and survival of the GWW and FS were determined in the laboratory. Complete consumption of ‘Sunturf’ bermudagrass occurred in 6-7 days with populations of greater than 3 LAW, 4 BCW, 10 FS. and 12 GWW. All population levels of LAW and BCW caused serious injury (greater than 20% of turf consumed) 4-5 days after adding third instar larvae to pots. One FS and one or two GWW larvae per pot caused only slight feeding injury. Developmental rate and survival of the GWW were poorest on 'Tifgreen’ and common bermudagrass. FS larvae developed more slowly when fed Zoysia matrella (L.) and centipedegrass, Eremochloa ophiuroides ((Munro.) Hack). All FS larvae fed St. Augustinegrass, Stenotaphrum secundatum ((Walt.) Kuntz.), died after 7-8 days

    Electrolyte jet machining for surface texturing of Inconel 718

    Get PDF
    Electrolyte jet machining is an emerging non-conventional machining process which is capable of selectively applying multi-scale surface textures. Surfaces processed in this way do not suffer from thermal damage and hence this technique is highly suited to finishing procedures in high value manufacturing across the aerospace and biomedical sectors. Furthermore, input variables can be modified dynamically to create functional graduation across component surfaces. In this study, the development and design of a custom-built EJM system is described, and the capability of the EJM platform to machine and create surface textures in Inconel 718, a widely used nickel based super alloy, is investigated. Through control of machine path programming and parameter variation, multi-scale surface textures are created which have the potential to enhance bonding with subsequent coating layers and also provide fluid dynamic advantage

    Targets for the MalI repressor at the divergent Escherichia coliK-12malX-malI promoters

    Get PDF
    Random mutagenesis has been used to identify the target DNA sites for the MalI repressor at the divergent Escherichia coli K-12 malX-malI promoters. The malX promoter is repressed by MalI binding to a DNA site located from position -24 to position -9, upstream of the malX promoter transcript start. The malI promoter is repressed by MalI binding from position +3 to position +18, downstream of the malI transcript start. MalI binding at the malI promoter target is not required for repression of the malX promoter. Similarly, MalI binding at the malX promoter target is not required for repression of the malI. Although the malX and malI promoters are regulated by a single DNA site for cyclic AMP receptor protein, they function independently and each is repressed by MalI binding to a different independent operator site

    Fluctuations in viscous fingering

    Full text link
    Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels reveal finger width fluctuations that were not observed in previous experiments, which had lower aspect ratios and higher capillary numbers Ca. These fluctuations intermittently narrow the finger from its expected width. The magnitude of these fluctuations is described by a power law, Ca^{-0.64}, which holds for all aspect ratios studied up to the onset of tip instabilities. Further, for large aspect ratios, the mean finger width exhibits a maximum as Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a few additional minor results. (Figures unchanged.) 4 pages, 3 figures. Submitted to PRE Rapi

    Shell Neurons of the Master Circadian Clock Coordinate the Phase of Tissue Clocks Throughout the Brain and Body

    Get PDF
    Background: Daily rhythms in mammals are programmed by a master clock in the suprachiasmatic nucleus (SCN). The SCN contains two main compartments (shell and core), but the role of each region in system-level coordination remains ill defined. Herein, we use a functional assay to investigate how downstream tissues interpret region-specific outputs by using in vivo exposure to long day photoperiods to temporally dissociate the SCN. We then analyze resulting changes in the rhythms of clocks located throughout the brain and body to examine whether they maintain phase synchrony with the SCN shell or core. Results: Nearly all of the 17 tissues examined in the brain and body maintain phase synchrony with the SCN shell, but not the SCN core, which indicates that downstream oscillators are set by cues controlled specifically by the SCN shell. Interestingly, we also found that SCN dissociation diminished the amplitude of rhythms in core clock gene and protein expression in brain tissues by 50–75 %, which suggests that light-driven changes in the functional organization of the SCN markedly influence the strength of rhythms in downstream tissues. Conclusions: Overall, our results reveal that body clocks receive time-of-day cues specifically from the SCN shell, which may be an adaptive design principle that serves to maintain system-level phase relationships in a changing environment. Further, we demonstrate that lighting conditions alter the amplitude of the molecular clock in downstream tissues, which uncovers a new form of plasticity that may contribute to seasonal changes in physiology and behavior

    Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight

    Full text link
    The BESS-Polar spectrometer had its first successful balloon flight over Antarctica in December 2004. During the 8.5-day long-duration flight, almost 0.9 billion events were recorded and 1,520 antiprotons were detected in the energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters

    Measurements of Atmospheric Antiprotons

    Full text link
    We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4 GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to 26 g/cm^2. The observed energy spectra, including our previous measurements at mountain altitude, were compared with estimated spectra calculated on various assumptions regarding the energy distribution of antiprotons that interacted with air nuclei.Comment: Accepted for publication in PL

    Stable vortex and dipole vector solitons in a saturable nonlinear medium

    Full text link
    We study both analytically and numerically the existence, uniqueness, and stability of vortex and dipole vector solitons in a saturable nonlinear medium in (2+1) dimensions. We construct perturbation series expansions for the vortex and dipole vector solitons near the bifurcation point where the vortex and dipole components are small. We show that both solutions uniquely bifurcate from the same bifurcation point. We also prove that both vortex and dipole vector solitons are linearly stable in the neighborhood of the bifurcation point. Far from the bifurcation point, the family of vortex solitons becomes linearly unstable via oscillatory instabilities, while the family of dipole solitons remains stable in the entire domain of existence. In addition, we show that an unstable vortex soliton breaks up either into a rotating dipole soliton or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.
    • 

    corecore