1,721 research outputs found

    Formation of delta ferrite in 9 wt.% Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation

    Get PDF
    In-situ X-ray diffraction (XRD) measurements using high energy synchrotron radiation were performed to monitor in real time the formation of delta ferrite in a martensitic 9 wt pct chromium steel under simulated weld thermal cycles. Volume fractions of martensite, austenite, and delta ferrite were measured as a function of temperature at a 10 K/s heating rate to 1573 K (1300 °C) and subsequent cooling. At the peak temperature, the delta ferrite concentration rose to 19 pct, of which 17 pct transformed back to austenite on subsequent cooling.Max Kade Foundation, Inc.Austrian Academy of SciencesUnited States. Dept. of Energy (Division of Materials Sciences and Engineering, Office of Science, and Office of Basic Energy Sciences

    Surface tension of the isotropic-nematic interface

    Full text link
    We present the first calculations of the pressure tensor profile in the vicinity of the planar interface between isotropic liquid and nematic liquid crystal, using Onsager's density functional theory and computer simulation. When the liquid crystal director is aligned parallel to the interface, the situation of lowest free energy, there is a large tension on the nematic side of the interface and a small compressive region on the isotropic side. By contrast, for perpendicular alignment, the tension is on the isotropic side. There is excellent agreement between theory and simulation both in the forms of the pressure tensor profiles, and the values of the surface tension.Comment: Minor changes; to appear in Phys. Rev.

    Specific Heat of Sr4Ru3O10

    Full text link
    We have measured the specific heat of single crystals of the triple-layer Ruddlesden-Popper material, Sr4Ru3O10, grown both in an image furnace and by flux-growth. The flux grown sample has a sharp mean-field-like anomaly at the onset of magnetic order, Tc = 102 K, but a much broader anomaly, indicative of residual heterogeneity, is observed for the image furnace sample. Even for the flux grown sample, however, the anomaly is at least an order of magnitude smaller than one would expect for complete ordering of the spins. Neither sample exhibits an anomaly at Tm ~ 50 K, where magnetic measurements suggest that basal plane antiferromagnetism sets in. Anomalous behavior (e.g. consistent with a term in the specific heat ~ T^3/2 as would be observed for a three-dimensional ferromagnet with weak exchange) is observed at low temperatures for both samples, indicative of the unusual magnetic order in this material.Comment: 14 pages including 4 figure

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value

    Changing the operation of small geometrically complex EBG-based antennas with micron-sized particles that respond to magneto-static fields

    Get PDF
    As the usage of wireless technology grows, there are evermore demands on the antennas that support these platforms. This need has led to the design of unique antennas with improved bandwidth, agile frequency capabilities, compact size and greater efficiencies. In part though, the trade-off for such capabilities is antenna complexity. This paper presents a new technique for simplifying the method of changing the operation of a printed antenna using micron-sized silver coated particles that respond to magneto-static fields. More specifically, a structure consisting of a low-loss dielectric material with a cylindrical cavity containing micro-sized particles is developed. The overall size of the dielectric material is 1.5 mm × 1.5 mm × 0.5 mm and the cavity has a diameter of 0.9 mm. Furthermore, the top and bottom of the cavity with the micron-sized particles is capped with copper foil. Then, to manipulate the enclosed particles, a static magnet is placed near the structure. The enclosed particles columnize and orientate in the direction of the field-lines, connecting the top and bottom copper foil plates. To disconnect the plates then, the field is simply removed and the columns collapse. Macroscopically, the structure has the behavior of a switch. The structures presented in this work are denoted as Magneto-static Field Responsive Structures (MRSs). The MRSs have an additional benefit of not requiring a direct connection to a biasing circuit. This is very useful because there are many antenna designs that make it difficult to embed biasing circuitry to reconfigure printed antennas using MEMS and PIN diodes, for example. Finally, a new frequency reconfigurable Electromagnetic Band Gap (EBG) antenna is presented. This design is unique because the complex layout does not allow for traditional biasing circuitry and the operation is changed using the new MRSs presented in this paper

    Two Aspects of the Mott-Hubbard Transition in Cr-doped V_2O_3

    Get PDF
    The combination of bandstructure theory in the local density approximation with dynamical mean field theory was recently successfully applied to V2_2O3_3 -- a material which undergoes the f amous Mott-Hubbard metal-insulator transition upon Cr doping. The aim of this sh ort paper is to emphasize two aspects of our recent results: (i) the filling of the Mott-Hubbard gap with increasing temperature, and (ii) the peculiarities of the Mott-Hubbard transition in this system which is not characterized by a diver gence of the effective mass for the a1ga_{1g}-orbital.Comment: 2 pages, 3 figures, SCES'04 conference proceeding

    ARPES Study of X-Point Band Overlaps in LaB6_6 and SmB6_6 - Contrast to SrB6_6 and EuB6_6

    Full text link
    In contrast to our recent finding of an X-point band gap in divalent hexaborides, we report here that angle resolved photoemission spectroscopy (ARPES) data shows that the gap is absent for trivalent LaB6_6 and is absent or nearly so for mixed valent SmB6_6. This finding demonstrates a nontrivial evolution of the band structure from divalent to trivalent hexaborides.Comment: submitted to SCES '0

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Direct experimental verification of applicability of single-site model for angle integrated photoemission of small TKT_{K} concentrated Ce compounds

    Full text link
    Bulk-sensitive high-resolution Ce 4f spectra have been obtained from 3d \to 4f resonance photoemission measurements on La1x_{1-x}Cex_xAl2_2 and La1x_{1-x}Cex_xRu2_2 for x=0.0,0.04,1.0x = 0.0, 0.04, 1.0. The 4f spectra of low-Kondo-temperature (TKT_{K}) (La,Ce)Al2_2 are essentially identical except for a slight increase of the Kondo peak with xx, which is consistent with a known increase of TKT_{K} with xx. In contrast, the 4f spectra of high-TKT_{K} (La,Ce)Ru2_2 show a Kondo-like peak and also a 0.5 eV structure which increases strongly with xx. The resonance photon-energy dependences of the two contributions are different and the origin of the 0.5 eV structure is still uncertain.Comment: submitted to SCES 2001, two-columnn format, modified tex

    Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors

    Full text link
    The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong coupling to only ~2% of the phonon modes. Novel characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and greater compared to a mean of 0.4\sim 0.4 for other modes, (2) a precipitous Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the frequency itself, indicating impending breakdown of linear electron-phonon theory. This behavior in borne out by recent inelastic x-ray scattering studies of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4 changed. Comparison with new data include
    corecore