1,041 research outputs found

    Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss

    Get PDF
    To prevent disproportionate collapse under an extreme loading event, a sudden column loss scenario is often used to ensure the structure has suitable robustness. This study aims to investigate experimentally the dynamic response of reinforced concrete flat slabs after a sudden column loss. Seven 1/3 scale reinforced concrete flat slabs were tested under static load increases or dynamic column removal cases with different supports removed. Reaction forces and deflections were recorded throughout, along with reinforcement strains and concrete cracking patterns. During dynamic tests, a high speed camera was used to capture the dynamic motion. The experiments demonstrated that flat slabs, in general, are able to redistribute their loading effectively after a column loss. Although large levels of damage were observed, collapse due to flexural failure did not occur. However, punching shear was shown to be an issue due to the additional vertical loading on the adjacent supports. The inclusion of continuous bottom reinforcement through a column did not significantly improve the capacity, as the new load path is not primarily through the removed column location. The results also indicate that the dynamic effects due to a sudden column loss can be significant as deflections of up to 1.5 times the static case were measured within the elastic range. It is also shown that the Dynamic Amplification Factor (DAF) reduces when nonlinear damaging effects are included, which implies conventional code-based design methods for flat slab structures may be over conservative. Additionally, the increase in material strength due the strain rates is not viewed to be significant

    Dynamic column loss analysis of reinforced concrete flat slabs

    Get PDF
    The sudden column loss idealisation is a useful design tool to assess structures for progressive collapse. As such an event is a dynamic problem, suitable account must be taken of these effects. This can either be achieved by a full dynamic analysis of the structure or a simplified static approach, with correction factors for the dynamic influence. This study aims to investigate the response of Reinforced Concrete (RC) flat slab structures after a column loss using experimentally validated Finite Element (FE) models. The nonlinear dynamic response of a structure after such an event is considered, including the redistribution of loads and displacement profile. These results are then compared to equivalent static cases in order to determine the Dynamic Amplification Factor (DAF). For the range of structures considered, the DAF was calculated as between 1.39 and 1.62 for displacements, with lower factors associated with a higher nonlinear response or slower column removal. Additionally, the shear forces in remaining columns may exceed 200% of their fully supported condition, with a different associated DAF. The effects of increasing the tensile strength of concrete due to high strain rates are also considered. Typical Dynamic Increase Factors (DIFs) based on the strain rates were up to 1.23, however, this only applied for a short time period, and in a limited area. Therefore, such effects do not significantly influence the response

    Chandra observation of two shock fronts in the merging galaxy cluster Abell 2146

    Get PDF
    We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster. The X-ray image and temperature map show a cool 2 –3 keV subcluster with a ram pressure stripped tail of gas just exiting the disrupted 6 − 7 keV primary cluster. From the sharp jump in the temperature and density of the gas, we determine that the subcluster is preceded by a bow shock with a Mach number M= 2.2 ± 0.8, corresponding to a velocity v= 2200+1000−900 km s−1 relative to the main cluster. We estimate that the subcluster passed through the primary core only 0.1 –0.3 Gyr ago. In addition, we observe a slower upstream shock propagating through the outer region of the primary cluster and calculate a Mach number M= 1.7 ± 0.3. Based on the measured shock Mach numbers M∼ 2 and the strength of the upstream shock, we argue that the mass ratio between the two merging clusters is between 3 and 4 to one. By comparing the Chandra observation with an archival Hubble Space Telescope observation, we find that a group of galaxies is located in front of the X-ray subcluster core but the brightest cluster galaxy is located immediately behind the X-ray peak

    Cabinet-Makers' Awareness and Usage of Rainforest Cabinet Timbers in Queensland

    Get PDF
    This paper reports findings of surveys into the usage of, and attitudes to, rainforest cabinet timbers by cabinet-makers in Queensland, Australia. In determining policies to promote growing of native rainforest trees on private land, it is necessary to know the market requirements for various cabinet species. The species most in demand by cabinet-makers are identified in this paper. Suitability and availability are found to be important determinants of cabinet-maker demand for timber. The species being planted in north Queensland are not a close match with those predicted by cabinet-makers to be in greatest demand in the future

    What's wrong with the scrum laws in rugby union? - Judgment, truth and refereeing

    Get PDF
    Officiating and the role of officials in sport are crucial and often decisive factors in sports contests. Notable contributions in philosophy of sport include Collins (2012), Russell (1997; 1999), McFee (2011) & Mumford (2006) have brought a sharp philosophical focus to highlight that justice and desert of sport contests, in part, rely on officiating truths (performances) that arise from an appropriate admixture of epistemic (judgments) and metaphysical (actions) ingredients. This paper provides a rigorous and original philosophical analysis of the problems of obeying the rules and of applying the rules of sport. The paper focuses on a particular phase of play in rugby union, namely the scrum. It is fair to say that the scrum has become a focus of criticism and bewilderment. Elite televised rugby is damaged as a spectacle because too much time is wasted setting and re-setting scrums. Furthermore, our trust in the fairness of games is eroded because the scrum is a ‘lottery’ when it comes to officiating. In this paper, we identify two fundamental structural problems which contribute to the scrum controversy. First, drawing on Mumford (2006) and Collins (2012) we argue that officials cannot make reliable judgments about scrums because they cannot see what they need to see. Secondly, we argue that players cannot follow the laws of the scrum even if they have a strong desire to do so. Laws which can’t be followed are, according to Fuller (2000) defective. Consequently, the scrum is not only potentially dangerous but also flawed in terms of its capacity to actualize an intended part of the game

    Causality - Complexity - Consistency: Can Space-Time Be Based on Logic and Computation?

    Full text link
    The difficulty of explaining non-local correlations in a fixed causal structure sheds new light on the old debate on whether space and time are to be seen as fundamental. Refraining from assuming space-time as given a priori has a number of consequences. First, the usual definitions of randomness depend on a causal structure and turn meaningless. So motivated, we propose an intrinsic, physically motivated measure for the randomness of a string of bits: its length minus its normalized work value, a quantity we closely relate to its Kolmogorov complexity (the length of the shortest program making a universal Turing machine output this string). We test this alternative concept of randomness for the example of non-local correlations, and we end up with a reasoning that leads to similar conclusions as in, but is conceptually more direct than, the probabilistic view since only the outcomes of measurements that can actually all be carried out together are put into relation to each other. In the same context-free spirit, we connect the logical reversibility of an evolution to the second law of thermodynamics and the arrow of time. Refining this, we end up with a speculation on the emergence of a space-time structure on bit strings in terms of data-compressibility relations. Finally, we show that logical consistency, by which we replace the abandoned causality, it strictly weaker a constraint than the latter in the multi-party case.Comment: 17 pages, 16 figures, small correction

    Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    Get PDF
    Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants
    corecore