139 research outputs found
Generation of ultrashort electrical pulses in semiconductor waveguides
We report a novel device capable of generating ultrashort electrical pulses on a coplanar waveguide (CPW) by means of optical rectification. The device consists of a completely passive GaAs-based optical waveguide, which is velocity matched to a CPW line. Optical pulses are injected into the device and electrical pulses are collected at the output. Experimental results obtained in the laboratory show the potential of this device for high speed optical-to-electrical conversion
Design, fabrication, and characterization of deep-etched waveguide gratings
One-dimensional (1-D) deep-etched gratings on a specially grown AlGaAs wafer were designed and fabricated. The gratings were fabricated using state-of-the-art electron beam lithography and high-aspect-ratio reactive ion etching (RIE) in order to achieve the required narrow deep air slots with good accuracy and reproducibility. Since remarkable etch depths (up to 1.5 /spl mu/m), which completely cut through the waveguide core layer, have been attained, gratings composed of only five periods (and, thus, shorter than 6 /spl mu/m) have a bandgap larger than 100 nm. A defect was introduced by increasing the width of the central semiconductor tooth to create microcavities that exhibit a narrow transmission peak (less than 7 nm) around the wavelength of 1530 nm. The transmission spectra between 1460 and 1580 nm have been systematically measured, and the losses have been estimated for a set of gratings, both with and without a defect, for different periods and air slot dimensions. Numerical results obtained via a bidirectional beam propagation code allowed the evaluation of transmissivity, reflectivity, and diffraction losses. By comparing experimental results with the authors' numerical findings, a clear picture of the role of the grating's geometric parameters in determining its spectral features and diffractive losses is illustrated
Longitudinal and transverse fermion-boson vertex in QED at finite temperature in the HTL approximation
We evaluate the fermion-photon vertex in QED at the one loop level in Hard
Thermal Loop approximation and write it in covariant form. The complete vertex
can be expanded in terms of 32 basis vectors. As is well known, the
fermion-photon vertex and the fermion propagator are related through a
Ward-Takahashi Identity (WTI). This relation splits the vertex into two parts:
longitudinal (Gamma_L) and transverse (Gamma_T). Gamma_L is fixed by the WTI.
The description of the longitudinal part consumes 8 of the basis vectors. The
remaining piece Gamma_T is then written in terms of 24 spin amplitudes.
Extending the work of Ball and Chiu and Kizilersu et. al., we propose a set of
basis vectors T^mu_i(P_1,P_2) at finite temperature such that each of these is
transverse to the photon four-momentum and also satisfies T^mu_i(P,P)=0, in
accordance with the Ward Identity, with their corresponding coefficients being
free of kinematic singularities. This basis reduces to the form proposed by
Kizilersu et. al. at zero temperature. We also evaluate explicitly the
coefficient of each of these vectors at the above-mentioned level of
approximation.Comment: 13 pages, uses RevTe
Gauge invariant derivative expansion of the effective action at finite temperature and density and the scalar field in 2+1 dimensions
A method is presented for the computation of the one-loop effective action at
finite temperature and density. The method is based on an expansion in the
number of spatial covariant derivatives. It applies to general background field
configurations with arbitrary internal symmetry group and space-time
dependence. Full invariance under small and large gauge transformations is
preserved without assuming stationary or Abelian fields nor fixing the gauge.
The method is applied to the computation of the effective action of spin zero
particles in 2+1 dimensions at finite temperature and density and in presence
of background gauge fields. The calculation is carried out through second order
in the number of spatial covariant derivatives. Some limiting cases are worked
out.Comment: 34 pages, REVTEX, no figures. Further comments adde
Stable vortex and dipole vector solitons in a saturable nonlinear medium
We study both analytically and numerically the existence, uniqueness, and
stability of vortex and dipole vector solitons in a saturable nonlinear medium
in (2+1) dimensions. We construct perturbation series expansions for the vortex
and dipole vector solitons near the bifurcation point where the vortex and
dipole components are small. We show that both solutions uniquely bifurcate
from the same bifurcation point. We also prove that both vortex and dipole
vector solitons are linearly stable in the neighborhood of the bifurcation
point. Far from the bifurcation point, the family of vortex solitons becomes
linearly unstable via oscillatory instabilities, while the family of dipole
solitons remains stable in the entire domain of existence. In addition, we show
that an unstable vortex soliton breaks up either into a rotating dipole soliton
or into two rotating fundamental solitons.Comment: To appear in Phys. Rev.
Do we live in the universe successively dominated by matter and antimatter?
We wonder if a cyclic universe may be dominated alternatively by matter and
antimatter. Such a scenario demands a mechanism for transformation of matter to
antimatter (or antimatter to matter) during the final stage of a big crunch. By
giving an example, we have shown that in principle such a mechanism is
possible. Our mechanism is based on a hypothetical repulsion between matter and
antimatter, existing at least deep inside the horizon of a black hole. When
universe is reduced to a supermassive black hole of a small size, a very strong
field of the conjectured force might create (through a Schwinger type
mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of
antimatter created from the vacuum is equal to the decrease of mass of the
black hole and violently repelled from it. When the size of the black hole is
sufficiently small, the creation of antimatter may become so fast, that matter
of our Universe might be transformed to antimatter in a fraction of second.
Such a fast conversion of matter into antimatter may look as a Big Bang. Our
mechanism prevents a singularity; a new cycle might start with an initial size
more than 30 orders of magnitude greater than the Planck length, suggesting
that there is no need for inflationary scenario in Cosmology. In addition,
there is no need to invoke CP violation for explanation of matter-antimatter
asymmetry. Simply, our present day Universe is dominated by matter, because the
previous universe was dominated by antimatter
Dalitz plot analysis of D_s+ and D+ decay to pi+pi-pi+ using the K-matrix formalism
FOCUS results from Dalitz plot analysis of D_s+ and D+ to pi+pi-pi+ are
presented. The K-matrix formalism is applied to charm decays for the first time
to fully exploit the already existing knowledge coming from the light-meson
spectroscopy experiments. In particular all the measured dynamics of the S-wave
pipi scattering, characterized by broad/overlapping resonances and large
non-resonant background, can be properly included. This paper studies the
extent to which the K-matrix approach is able to reproduce the observed Dalitz
plot and thus help us to understand the underlying dynamics. The results are
discussed, along with their possible implications on the controversial nature
of the sigma meson.Comment: To be submitted to Phys.Lett.B A misprint corrected in formula
On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle (Part One)
In October 1924, the Physical Review, a relatively minor journal at the time,
published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Van Vleck combined advanced
techniques of classical mechanics with Bohr's correspondence principle and
Einstein's quantum theory of radiation to find quantum analogues of classical
expressions for the emission, absorption, and dispersion of radiation. For
modern readers Van Vleck's paper is much easier to follow than the famous paper
by Kramers and Heisenberg on dispersion theory, which covers similar terrain
and is widely credited to have led directly to Heisenberg's "Umdeutung" paper.
This makes Van Vleck's paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did
not take the next step and develop matrix mechanics himself.Comment: 82 page
Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.
With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches
- âŠ