416 research outputs found

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte

    Review of Dental Impression Materials

    Full text link
    Major advances in impression materials and their application have occurred during the last decade, with greater emphasis being placed on rubber impression materials than on dental compound, zinc oxide-eugenol, and agar and alginate. Of particular interest has been the effect of disinfection solutions on the qualities of impressions and the biocompatibility of impression materials. The principal advance in hydrocolloids has been the introduction of the agar/alginate impression technique, which has simplified the procedure and improved the quality of gypsum dies compared with those prepared in alginate impressions. The tear strength of some alginates has been improved, and some have been formulated so that the powder is dustless, thus reducing the health hazard as a result of patient inhalation of dust during the dispensing process. Polyether and silicone impression materials have been modified so that the working time, viscosity, and flexibility of the polyethers have been improved and, with the introduction of addition silicones, their accuracy has become exceptional. Although the early addition silicones liberated hydrogen after setting, thus delaying the pouring of models and dies, most addition silicones have been improved so that no hydrogen is released and dies can be poured immediately. The introduction of automatic mixing systems for addition silicones has simplified their manipulation, has reduced the number of voids in impressions, and has reduced the amount of material wasted. The incorporation of surfactants into addition silicones has made them hydrophilic, with wetting properties similar to those of polyethers, and has made pouring bubble-free gypsum dies easier. This review is confined to published and unpublished information of the past decade. It will also suggest trends that should be anticipated in the near future based on this information. The review will not present information developed before 1975, which is available in several textbooks on dental materials by Craig (1985a), Phillips (1982), and Williams and Cunningham (1979).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66604/2/10.1177_08959374880020012001.pd

    Perspectives on multiscale modelling and experiments to accelerate materials development for fusion

    Get PDF
    Prediction of material performance in fusion reactor environments relies on computational modelling, and will continue to do so until the first generation of fusion power plants come on line and allow long-term behaviour to be observed. In the meantime, the modelling is supported by experiments that attempt to replicate some aspects of the eventual operational conditions. In 2019, a group of leading experts met under the umbrella of the IEA to discuss the current position and ongoing challenges in modelling of fusion materials and how advanced experimental characterisation is aiding model improvement. This review draws from the discussions held during that workshop. Topics covering modelling of irradiation-induced defect production and fundamental properties, gas behaviour, clustering and segregation, defect evolution and interactions are discussed, as well as new and novel multiscale simulation approaches, and the latest efforts to link modelling to experiments through advanced observation and characterisation techniques.MRG, SLD, and DRM acknowledge funding by the RCUK Energy Programme [grant number EP/T012250/1]. Part of this work has been carried out within the framework of the EUROFusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. JRT acknowledges funding from the US Department of Energy (DOE) through grant DE-SC0017899. ZB, LY,BDW, and SJZ acknowledge funding through the US DOE Fusion Energy Sciences grant DE-SC0006661ZB, LY and BDW also were partially supported from the US DOE Office of Science, Office of Fusion Energy Sciences and Office of Advanced Scientific Computing Research through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions. JMa acknowledges support from the US-DOEs Office of Fusion Energy Sciences (US-DOE), project DE-SC0019157. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy (DOE) under contract DE-AC05-76RL01830. YO and YZ were supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under contract number DE-AC05-00OR22725. TS and TT are supported by JSPS KAKENHI Grant Number 19K05338

    Reading religion in Norwegian textbooks: are individual religions ideas or people?

    Get PDF
    Different religions are treated in different ways in Norwegian sixth form textbooks. We carried out an exhaustive content analysis of the chapters devoted to individual religions in textbooks for the Religion and Ethics course currently available in Norway, using rigorous indicators to code each word, image and question according to whether they were treated the religion as a set of ideas or a group of people. After adjusting for trends in the different kinds of data (word, image, question), we found that Buddhism and Christianity receive significantly more attention for their ideas than Hinduism, Islam and Judaism, which are treated more as people. This difference cannot be explained by the national syllabus or the particularities of the individual religions. The asymmetry also has implications for the pupils’ academic, moral and pedagogical agency for which teachers play a critical role in compensating.acceptedVersio

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil

    A Search for Selectrons and Squarks at HERA

    Get PDF
    Data from electron-proton collisions at a center-of-mass energy of 300 GeV are used for a search for selectrons and squarks within the framework of the minimal supersymmetric model. The decays of selectrons and squarks into the lightest supersymmetric particle lead to final states with an electron and hadrons accompanied by large missing energy and transverse momentum. No signal is found and new bounds on the existence of these particles are derived. At 95% confidence level the excluded region extends to 65 GeV for selectron and squark masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
    corecore