15 research outputs found

    Overview of the JET results in support to ITER

    Get PDF

    Barley starch

    Get PDF
    This thesis examined barley amylopectin structure and looked for correlations between the structure and physical properties of starch. The structure of amylopectin and gelatinisation and retrogradation of starch were studied in 10 different barley cultivars/breeding lines with differing genetic background. Amylopectin is built up of thousands of chains of glucose monomers, organised into clusters. The detailed fine structure of amylopectin was studied by isolating clusters of amylopectin and their building blocks, which are the tightly branched units building up the clusters. Barley cultivars/breeding lines possessing the amo1 mutation had fewer long chains of DP≥38 in amylopectin and more large building blocks. The structure of building blocks was rather conserved between the different barley cultivars/breeding lines studied and was categorized into different size groups. These different building blocks were shown to be randomly distributed in the amylopectin molecule. The C-chains in amylopectin can be of any length and are a category of chains different from the B-chains. The backbone in amylopectin consists of a special type of B-chains which, when cleaved by α-amylase, become chains of a similar type to C-chains. Gelatinisation and retrogradation (recrystallisation of gelatinised starch) of barley starch was studied by differential scanning calorimetry. The amo1 mutation resulted in a broader gelatinisation temperature range and a higher enthalpy of retrogradation. Other structural features were also found to influence the physical properties of starch. Small clusters and denser structure of the building blocks resulted in higher gelatinisation temperature. Fast retrogradation was observed in barley which had amylopectin with shorter chains and many large building blocks consisting of many chains. Amylopectin structure was also studied in developing barley kernels. Three barley cultivars/breeding lines were grown in a phytotron and kernels were harvested at 9, 12 and 24 days after flowering. The results showed that amylopectin synthesized at later stages of development had a more tightly branched structure. Expression of the enzymes involved in starch biosynthesis is also known to change during endosperm development

    Investigation of laminar detachment by means of simultaneous microphone and surface hot wire measurements

    Get PDF
    An experimental study on the acoustic characterization of the laminar separation bubble on an airfoil is presented. The acoustic near- and far-fields are sampled by means of microphone arrays. Additionally the wall shear stresses are measured on the airfoil suction side by means of 24 MEMS surface hot wires in the region where the separation bubble was expected. Dierent processing strategies both in the frequency and in the time domain were applied for an acoustic characterization of the bubble. A focus of the study presented here is the application of the so called causality correlation method. The wall shear stresses on the airfoil surface together with the pressure fluctuations in the near- and far-field are recorded simultaneously. This enables the calculation of the cross-correlation between the measured quantities. An analysis of the resulting coecient matrix in the space-time domain identies perturbations traveling along the airfoil, showing a linear dependency on the sound generating process. For the case of the correlation between the wall shear stresses on the airfoil and the pressure fluctuations in the far-field the validity of the results were improved signicantly by using the focused pressure signals from the microphone-array

    Physics of runaway electrons in tokamaks

    No full text

    Inadequacy of technology and innovation systems at the periphery

    No full text
    Scientific and technical activities on JET focus on the issues likely to affect the ITER design and operation. Our understanding of the ITER reference mode of operation, the ELMy H-mode, has progressed significantly. The extrapolation of ELM size to ITER has been re-evaluated. Neoclassical tearing modes have been shown to be meta-stable in JET, and their beta limits can be raised by destabilization (modification) of sawteeth by ion cyclotron radio frequency heating (ICRH). Alpha simulation experiments with ICRH accelerated injected 4 (He) beam ions provide a new tool for fast particle and magnetohydrodynamic studies, with up to 80-90% of plasma heating by fast 4 He ions. With or without impurity seeding, a quasi-steady-state high confinement (H(98) = 1), high density(n(e)/n(GW) = 0.9-1) and high beta (betaN = 2) ELMy H-mode has been achieved by operating near the ITER triangularity ( similar to 0.40-0.5) and safety factor (q(95) similar to 3), at Z(eff) similar to 1.5-2. In advanced tokamak (AT) scenarios, internal transport barriers (ITBs) are now characterized in real time with a new criterion, rhoT(*). Tailoring of the current profile with T lower hybrid current drive provides reliable access to a variety of q profiles, lowering access power for barrier formation. Rational q surfaces appear to be associated with ITB formation. Alfven cascades were observed in reversed shear plasmas, providing identification of q profile evolution. Plasmas with 'current holes' were observed and modelled. Transient high confinement AT regimes with H(89) = 3.3, beta(N) = 2.4 and ITER-relevant q < 5 were achieved with reversed magnetic shear. Quasi-stationary ITBs are developed with full non-inductive current drive, including similar to 50% bootstrap current. A record duration of ITBs was achieved, up to 11 s, approaching the resistive time. For the first time, pressure and current profiles of AT regimes are controlled by a real-time feedback system, in separate experiments. Erosion and co-deposition studies with a quartz micro-balance show reduced co-deposition. Measured divertor thermal loads during disruptions in JET could modify ITER assumptions

    Overview of the JET results with the ITER-like wall

    No full text
    Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential

    Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

    No full text
    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4 MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n H/n e but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I p = 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4 MA), tungsten accumulation can be only avoided with 5 MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW,very low tungsten concentration in the core (∼10-5) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient
    corecore