170 research outputs found
Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic
We simulate CMB maps including non-Gaussianity arising from cubic order
perturbations of the primordial gravitational potential, characterized by the
non-linearity parameter . The maps are used to study the characteristic
nature of the resulting non-Gaussian temperature fluctuations. We measure the
genus and investigate how it deviates from Gaussian shape as a function of
and smoothing scale. We find that the deviation of the non-Gaussian
genus curve from the Gaussian one has an antisymmetric, sine function like
shape, implying more hot and more cold spots for and less of both
for . The deviation increases linearly with and also
exhibits mild increase as the smoothing scale increases. We further study other
statistics derived from the genus, namely, the number of hot spots, the number
of cold spots, combined number of hot and cold spots and the slope of the genus
curve at mean temperature fluctuation. We find that these observables carry
signatures of that are clearly distinct from the quadratic order
perturbations, encoded in the parameter . Hence they can be very useful
tools for distinguishing not only between non-Gaussian temperature fluctuations
and Gaussian ones but also between and type
non-Gaussianities.Comment: 18+1 page
Constraining the Power Spectrum using Clusters
(Shortened Abstract). We analyze a redshift sample of Abell/ACO clusters and
compare them with numerical simulations based on the truncated Zel'dovich
approximation (TZA), for a list of eleven dark matter (DM) models. For each
model we run several realizations, on which we estimate cosmic variance
effects. We analyse correlation statistics, the probability density function,
and supercluster properties from percolation analysis. As a general result, we
find that the distribution of galaxy clusters provides a constraint only on the
shape of the power spectrum, but not on its amplitude: a shape parameter 0.18 <
\Gamma < 0.25 and an effective spectral index at 20Mpc/h in the range
[-1.1,-0.9] are required by the Abell/ACO data. In order to obtain
complementary constraints on the spectrum amplitude, we consider the cluster
abundance as estimated using the Press--Schechter approach, whose reliability
is explicitly tested against N--body simulations. We conclude that, of the
cosmological models considered here, the only viable models are either Cold+Hot
DM ones with \Omega_\nu = [0.2-0.3], better if shared between two massive
neutrinos, and flat low-density CDM models with \Omega_0 = [0.3-0.5].Comment: 37 pages, Latex file, 9 figures; New Astronomy, in pres
Detectability of Tensor Perturbations Through CBR Anisotropy (final published version)
Detection of the tensor perturbations predicted in inflationary models is
important for testing inflation as well as for reconstructing the inflationary
potential. We show that because of cosmic variance the tensor contribution to
the square of the CBR quadrupole anisotropy must be greater than about 20\% of
the scalar contribution to ensure a statistically significant detection of
tensor perturbations. This sensitivity could be achieved by full-sky
measurements on angular scales of and .Comment: 10 pages, uu-encoded postscript file, FERMILAB-PUB-94/175-
Geniculo-Cortical Projection Diversity Revealed within the Mouse Visual Thalamus
This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pone.0144846All dLGN cell co-ordinates, V1 injection sites, dLGN boundary coordinates, experimental protocols and analysis scripts are available for download from figshare at https://figshare.com/s/36c6d937b1844eec80a1.The mouse dorsal lateral geniculate nucleus (dLGN) is an intermediary between retina and primary visual cortex (V1). Recent investigations are beginning to reveal regional complexity in mouse dLGN. Using local injections of retrograde tracers into V1 of adult and neonatal mice, we examined the developing organisation of geniculate projection columns: the population of dLGN-V1 projection neurons that converge in cortex. Serial sectioning of the dLGN enabled the distribution of labelled projection neurons to be reconstructed and collated within a common standardised space. This enabled us to determine: the organisation of cells within the dLGN-V1 projection columns; their internal organisation (topology); and their order relative to V1 (topography). Here, we report parameters of projection columns that are highly variable in young animals and refined in the adult, exhibiting profiles consistent with shell and core zones of the dLGN. Additionally, such profiles are disrupted in adult animals with reduced correlated spontaneous activity during development. Assessing the variability between groups with partial least squares regression suggests that 4?6 cryptic lamina may exist along the length of the projection column. Our findings further spotlight the diversity of the mouse dLGN?an increasingly important model system for understanding the pre-cortical organisation and processing of visual information. Furthermore, our approach of using standardised spaces and pooling information across many animals will enhance future functional studies of the dLGN.Funding was provided by a Wellcome Trust grant jointly awarded to IDT and SJE (083205, www.wellcome.ac.uk), and by MRC PhD Studentships awarded to MNL and ACH (http://www.mrc.ac.uk/)
LIMITS ON ANISOTROPY AND INHOMOGENEITY FROM THE COSMIC BACKGROUND RADIATION,
We consider directly the equations by which matter imposes anisotropies on
freely propagating background radiation, leading to a new way of using
anisotropy measurements to limit the deviations of the Universe from a
Friedmann-Robertson-Walker (FRW) geometry. This approach is complementary to
the usual Sachs-Wolfe approach: the limits obtained are not as detailed, but
they are more model-independent. We also give new results about combined
matter-radiation perturbations in an almost-FRW universe, and a new exact
solution of the linearised equations.Comment: 18 pages Latex
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Conflict in object affordance revealed by grip force
Viewing objects can result in automatic, partial activation of motor plans associated with them—“object affordance”. Here, we recorded grip force simultaneously from both hands in an object affordance task to investigate the effects of conflict between coactivated responses. Participants classified pictures of objects by squeezing force transducers with their left or right hand. Responses were faster on trials where the object afforded an action with the same hand that was required to make the response (congruent trials) compared to the opposite hand (incongruent trials). In addition, conflict between coactivated responses was reduced if it was experienced on the preceding trial, just like Gratton adaptation effects reported in “conflict” tasks (e.g., Eriksen flanker). This finding suggests that object affordance demonstrates conflict effects similar to those shown in other stimulus–response mapping tasks and thus could be integrated into the wider conceptual framework on overlearnt stimulus–response associations. Corrected erroneous responses occurred more frequently when there was conflict between the afforded response and the response required by the task, providing direct evidence that viewing an object activates motor plans appropriate for interacting with that object. Recording continuous grip force, as here, provides a sensitive way to measure coactivated responses in affordance tasks
Superconformal N=2, D=5 matter with and without actions
We investigate N=2, D=5 supersymmetry and matter-coupled supergravity
theories in a superconformal context. In a first stage we do not require the
existence of a Lagrangian. Under this assumption, we already find at the level
of rigid supersymmetry, i.e. before coupling to conformal supergravity, more
general matter couplings than have been considered in the literature. For
instance, we construct new vector-tensor multiplet couplings, theories with an
odd number of tensor multiplets, and hypermultiplets whose scalar manifold
geometry is not hyperkaehler.
Next, we construct rigid superconformal Lagrangians. This requires some extra
ingredients that are not available for all dynamical systems. However, for the
generalizations with tensor multiplets mentioned above, we find corresponding
new actions and scalar potentials. Finally, we extend the supersymmetry to
local superconformal symmetry, making use of the Weyl multiplet. Throughout the
paper, we will indicate the various geometrical concepts that arise, and as an
application we compute the non-vanishing components of the Ricci tensor of
hypercomplex group manifolds. Our results can be used as a starting point to
obtain more general matter-couplings to Poincare supergravity.Comment: 67 pages; v2: title of reference changed and small editing
corrections; v3: small typing errors corrected, version published in JHEP;
v4: typos corrected; v5: additional term in (2.109) and (4.11); v6: change of
order of indices in (2.89
- …